Inventory of medium-sized and large mammals in La Encrucijada Biosphere Reserve and Puerto Arista Estuarine System, Chiapas, Mexico

Julio C. Hernández-Hernández, Cuauhtémoc Chávez*

1 Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico • biol.julio@mail.com • https://orcid.org/0000-0002-1286-2404
2 Departamento de Ciencias Ambientales, CBS Universidad Autónoma Metropolitana-Lerma, Estado de México, Mexico • j.chavez@correo.ler.uam.mx • https://orcid.org/0000-0003-2201-4748
* Corresponding author

Abstract
La Encrucijada Biosphere Reserve (REBIEN) and Puerto Arista Estuarine System (SEPA) are natural protected areas and Ramsar sites in Chiapas, Mexico. In this study, we conducted an inventory of medium-sized and large mammals using camera trapping. We recorded 23 species in the REBIEN and 13 species in the SEPA. In addition, 35% of the species recorded in the two sites are at some category of risk of extinction at the national or international level. The most abundant species in the REBIEN were Northern Raccoon (*Procyon lotor* (Linnaeus, 1758)) and White-Nosed Coati (*Nasua narica* (Linnaeus, 1766)). In the SEPA, White-tailed Deer (*Odocoileus virginianus* (Zimmermann, 1780)), Collared Peccary (*Dicotyles crassus* (Merriam, 1901)), and White-Nosed Coati (*Nasua narica*). Our results highlight the importance of both study sites in the conservation of medium-sized and large mammals and underline the urgent need to develop conservation strategies for these areas.

Keywords
Camera trapping, endangered species, diversity, inventory, Mammalia, protected areas, relative abundance

Introduction
Wild mammals are one of the most conspicuous groups in terrestrial vertebrate communities (Sánchez-Cordero et al. 2014). Mammals cover a wide range of niches, playing crucial ecological roles that influence community structure and ecosystem functioning (Ripple et al. 2014). However, they are sensitive to human-generated impacts, being the third most vulnerable group among vertebrates, with about 25% of species under some category of risk according to the Red List of Threatened Species (IUCN 2020). Records of the mammalian species at a site, region, or country can help to develop conservation strategies that combine ecological foundations, biodiversity, critical habitat, and key ecological relationships, all of which may be site-specific and species-specific at any given time (Rovero et al. 2014). These assessments also provide information on biodiversity values that are recognized and considered in planning and decision-making processes (Ruiz-Gutiérrez et al. 2020).
The state of Chiapas, which is widely recognized as one of the regions with the greatest richness of wild mammals in Mexico (Ceballos and Oliva 2005; Naranjo et al. 2005), has 207 species, which altogether represent 37% of all the mammalian fauna of Mexico (Rivero and Medellín 2015). However, there are still areas within Chiapas, such as the La Encrucijada Biosphere Reserve (REBIEN) and the federal protected area Puerto Arista Estuarine System (SEPA), with little available information on the mammalian fauna. Within SEPA, the flat landscape on the southern side of the Coastal Plain is interrupted by Cerro de Bernal, which is the only noteworthy mountain south of the Mexican municipality of Tonalá, Chiapas. This mountain is part of the Sierra Madre de Chiapas and makes up part of the biological corridor between SEPA and REBIEN, which spans the area between the coastal plain and the Sierra Madre (INE 1999). This connectivity between mountain and the marine environments maintains important ecotones at the coastal level, and this biological corridor is of great importance for conservation of biodiversity and maintenance of ecosystem services in the region (IDESMAC 2016). Both study sites are located in the Pacific Coastal Plain physiographic region, and they present provide several types of habitats, microhabitats, and unique climatic conditions (INE 1999). However, despite being classified as Ramsar sites in the wetland’s convention (FIR 2007), there are no information available on the local mammalian fauna within these areas. Under this premise, we provide a list of medium-sized and large mammals present in the REBIEN and the SEPA.

Study Area

The study sites are located in southern Chiapas, Mexico. They are La Encrucijada Biosphere Reserve (REBIEN, at 15°35.853′N, 093°20.430′W and 14°47.789′N, 092°30.454′W; 0–10 m a.s.l.) and the northeast portion of the Puerto Arista Estuarine System (SEPA), in the area known as Cerro Bernal (15°54.223′N, 093°35.859′W; 1,020 m a.s.l.). The REBIEN has an area of 144,868 ha, of which 36,216 ha are in two central areas (La Encrucijada and Palmarcito) and 108,651 ha are part of a buffer zone. The types of vegetation present include mangroves, tule marsh, zapotonales, coastal scrub, floating and underwater vegetation, and medium to sub-evergreen forest (INE 1999; Fig. 1). There are 64 towns within the reserve with a total of 26,990 inhabitants, and the population has a high growth rate caused by migrants from Central America.

The predominant climate in this area is tropical-humid (Aw) with an average annual temperature of 28 °C and an annual precipitation between 2500 and 3000 mm (García 1973). The REBIEN It is the only area that protects the ecosystems and the flora and fauna species that inhabits the wetlands along the coast of Chiapas. This area is home to mangroves that reach of 35 m in height (considered the highest in North America). It is also one of the only flooded forests in Mexico that is dominated by *Pachira aquatica* (Aubl.), and palmares of *Sabal mexicana* (Mart.) (Mendoza 2000). Cerro Bernal extends over more than 8,000 ha and is home to remnants of medium sub-evergreen forest in the higher elevations and around ravines, and low sub-deciduous forest on the slopes (Fig. 2). The climate is warm sub-humid (Aw) with rains in summer, an average annual temperature of 26 °C, and annual rainfall that oscillates around 1,535 mm (FIR 2007; CONANP 2012).

Methods

Sampling. Field surveys at the REBIEN were carried out from August 2015 to August 2016, during which 30 stations were placed with a digital camera-traps of different models (two LTL Acorn 6210, eight ScoutGuard SG 550, and 20 Cuddeback C1). In the SEPA, sampling was carried out from November 2015 to July 2016, during which eight camera traps were placed (three Cuddeback Attack and five Cuddeback C1). The cameras were installed without any bait and were located in places where mammal signs (e.g., footprints and scat) were detected, with cameras set at a distance of 1–3 km apart; the active period was about 24 hours per day and cameras were programmed to take a photograph at 60-sec intervals. The photographed species were identified using field guides (i.e., Reid 2009). The classification and nomenclature of Mammal Diversity Database (2021) was used. The conservation status of the recorded species was obtained through the Official Mexican Legislation NOM-059-SEMARNAT-2010 (SEMARNAT 2010) and the Red List of Threatened Species (IUCN 2020).

Data analysis. In this study, medium-sized and large mammals were considered to be those whose adult body weight exceeded 500 g (Reid 2009). The species in both study sites are distributed in five trophic guilds: omnivorous, herbivorous, carnivorous, insectivorous, and frugivorous (González-Salazar et al. 2014). Species richness at both study sites was determined through an interpolation and extrapolation analysis proposed by Chao et al. (2014) using Hill’s numbers (Hill 1973) for species richness \((q = 0)\) based on incidence data. Likewise, richness species by sampling coverage was estimated, which is a measure of sample’s completeness with respect to the community’s size (Chao and Jost 2012). We analyzed data using the iNEXT package (Hsieh et al. 2016) integrated into R (R CoreTeam 2020). Additionally, we calculated the relative abundance index (RAI) for all species as:

\[
RAI = \left(\frac{E}{TN} \right) \times 100 \text{ days/trap},
\]

where \(E\) is the number of events photographed, \(TN\) is the total number of trap nights and 100 trap days (Lira-Torres et al. 2014). We used RAI because it is considered an accurate index of abundance for some species (Parsons et al. 2017; Palmer et al. 2018). However, the use of this index without calibration and its comparison
across time, space, or species is extremely problematic (O’Brien 2011); as a consequence, the use of the RAI can lead to erroneous conclusions about species abundance (Sunarto et al. 2013). Because it was not possible to individually identify to species all records, they were considered independent when consecutive photographs of clearly differentiable individuals were obtained or when consecutive photographs of individuals of the same species were separated by more than 24 h between an event and the next (Srbek-Araujo and Chiaraiello 2005; Chávez et al. 2013). For species with herd behavior, the number of independent records was considered equal to the number of individuals observed in the photographs (Maffei et al. 2002). For the annotated list we mention the number of independent records in stations in which each species was recorded when there were less than three and multiple when there were more than four.

Results

In the REBIEN, 19 species of medium-sized and large mammals were recorded, belonging to eight orders, 16...
families, and 22 genera, with a sampling effort of 5,400 trap days. In addition, we added four other species to the list based on direct observations and the references consulted (Table 1; Figs. 3–5). In the SEPA, 13 mammal species were recorded, belonging to six orders, 11 families and 13 genera, with a sampling effort of 760 trap nights (Table 1; Figs. 3–5). An asymptotic trend in the curve was observed at both study sites (Fig. 6). Sample coverage was 99.8% for the REBIEN and 99.5% for the SEPA, indicating that the sampling effort was representative. The species in both study sites are distributed in five trophic guilds; seven are omnivorous, six are herbivorous, five are carnivorous, three insectivorous, and two frugivorous (Table 1). Of the recorded species, four are considered threatened; four are Endangered under Mexican legislation. Globally, two species are categorized as Near Threatened and one Endangered (Table 1). The species with the highest RAI in the REBIEN were *Procyon*...
Table 1. Species list of medium-sized and large land mammals detected with camera traps in La Encrucijada Biosphere Reserve (REBIEN) and Puerto Arista Estuarine System (SEPA). Conservation status according to the IUCN Red List (2020) and Mexican legislation (NOM-059-SEMARNAT 2010). IUCN categories: (LC) Least Concern, (NT) Near Threatened, and (EN) Endangered. NOM-059: (Th) Threatened, and (En) Endangered. The method by which the records of the species were obtained at the study sites is indicated by a P, when obtained through camera traps, L when it was obtained through literature, and Ob when it was obtained by direct observation. In the cases where literature was the information source, the superscript indicates the specific citation. Trophic guild: (O) omnivore, (C) carnivore, (I) insectivore, (H) herbivore, (F) frugivore.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Common name</th>
<th>IUCN status</th>
<th>NOM-059</th>
<th>REBIEN</th>
<th>SEPA</th>
<th>Trophic guild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didelphimorphia</td>
<td>Philander vossi</td>
<td>Gray Four-eyed Opossum</td>
<td>LC</td>
<td>P</td>
<td>P</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Didelphidae</td>
<td>Didelphis marsupialis</td>
<td>Common Opossum</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Cingulata</td>
<td>Dasypodidae</td>
<td>Dasypus novemcinctus</td>
<td>Nine-banded Armadillo</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Pilosa</td>
<td>Myrmecophagidae</td>
<td>Tamandua mexicana</td>
<td>Northern Tamandua</td>
<td>LC</td>
<td>En</td>
<td>P</td>
</tr>
<tr>
<td>Primates</td>
<td>Atelidae</td>
<td>Ateles geoffroyi</td>
<td>Central American Spider Monkey</td>
<td>En</td>
<td>En</td>
<td>Ob</td>
</tr>
<tr>
<td></td>
<td>Leporidae</td>
<td>Sylvilagus floridanus</td>
<td>Eastern Cottontail</td>
<td>LC</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Rodentia</td>
<td>Cuniculidae</td>
<td>Cuniculus paca</td>
<td>Lowland Paca</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Dasypodidae</td>
<td>Dasypus punctatus</td>
<td>Central American Agouti</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Erethizontidae</td>
<td>Coendou mexicanus</td>
<td>Mexican Porcupine</td>
<td>LC</td>
<td>Th</td>
<td>P, Ob</td>
</tr>
<tr>
<td></td>
<td>Sciuridae</td>
<td>Sciurus aureogaster</td>
<td>Mexican Gray Squirrel</td>
<td>LC</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sciurus variegatoides</td>
<td>Variegated Squirrel</td>
<td>LC</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Carnivora</td>
<td>Canidae</td>
<td>Urocyon cinereoargenteus</td>
<td>Gray Fox</td>
<td>LC</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canis latrans</td>
<td>Coyote</td>
<td>LC</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Felidae</td>
<td>Herpailurus yagouaroundi</td>
<td>Jaguarundi</td>
<td>LC</td>
<td>Th</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Panthera onca</td>
<td>Jaguar</td>
<td>NT</td>
<td>En</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leopardus pardalis</td>
<td>Ocelot</td>
<td>LC</td>
<td>En</td>
<td>L, Ob</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Mephitinae</td>
<td>Conepatus leuconotus</td>
<td>American Hog-nosed Skunk</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Mustelidae</td>
<td>Galictis vittata</td>
<td>Greater Grison</td>
<td>LC</td>
<td>Th</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Lontra longicaudis</td>
<td>Neotropical River Otter</td>
<td>NT</td>
<td>Th</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procyonidae</td>
<td>Procyon lotor</td>
<td>Northern Raccoon</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nasua narica</td>
<td>White-nosed Coati</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Artiodactyla</td>
<td>Dicotyles crassus</td>
<td>Collared Peccary</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Cervidae</td>
<td>Odocoileus virginianus</td>
<td>White-tailed Deer</td>
<td>LC</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

Total 23 13

Espinoza et al. (2001).

lotor (Linnaeus, 1758) (RAI = 4.35) and *Nasua narica* (Linnaeus, 1766) (RAI = 3.91). In comparison species with the highest RAI in the SEPA were *Odocoileus virginianus* (Zimmermann, 1780) (RAI = 2.82), *Dicotyles crassus* (Merriam, 1901) (RAI = 1.92), and *N. narica* (RAI = 2.23) (Table 2).
Table 2. Relative abundance index of medium-sized and large land mammals detected with camera traps in some tropical areas of Mexico. The predominant vegetation type of the study site is indicated in parenthesis: (W) wetlands, (TSF) tropical semideciduous forest.

<table>
<thead>
<tr>
<th>Species list</th>
<th>Study sites REBIE (W)</th>
<th>SEPA (W)</th>
<th>Marismas (W)</th>
<th>Petenes (W)</th>
<th>Tolustoque (TSF)</th>
<th>Tepezcuintle (TSF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didelphimorphia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philander opossum</td>
<td>2.04</td>
<td>0.23</td>
<td>7.67</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didelphis marsupialis</td>
<td>1.67</td>
<td>0.86</td>
<td>13.64</td>
<td>1.36</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Didelphis virginiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cingulata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>1.02</td>
<td>0.86</td>
<td>0.11</td>
<td>0.68</td>
<td>0.51</td>
<td>0.07</td>
</tr>
<tr>
<td>Pilosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamandua mexicana</td>
<td>0.12</td>
<td>0.08</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Primates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ateles geoffroyi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Lagomorpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvilagus floridanus</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvilagus sp.</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Rodentia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuniculus paca</td>
<td>1.89</td>
<td>0.86</td>
<td>8.78</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmodus punctatus</td>
<td>0.08</td>
<td>0.16</td>
<td></td>
<td>17.05</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>Desmodus mexicanus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coendou mexicanus</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Sciurus aureogaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciurus variegatoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnivora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procyon lotor</td>
<td>4.35</td>
<td>0.08</td>
<td>1.86</td>
<td>2.98</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Naisus narica</td>
<td>3.91</td>
<td>2.23</td>
<td>0.96</td>
<td>22.25</td>
<td>1.28</td>
<td>0.23</td>
</tr>
<tr>
<td>Herpestus yogaouroundi</td>
<td>0.26</td>
<td>0.12</td>
<td>0.06</td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Puma concolor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panthera onca</td>
<td>0.06</td>
<td>2.65</td>
<td></td>
<td>0.11</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Leopardus pardalis</td>
<td>0.16</td>
<td>1.02</td>
<td>1.1</td>
<td>0.32</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Leopardus wiedii</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lynx rufus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
</tr>
<tr>
<td>Urocyon cinereoargenteus</td>
<td>0.19</td>
<td></td>
<td>0.25</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Canis latrans</td>
<td>0.18</td>
<td>1.02</td>
<td></td>
<td>0.6</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Conepatus leonineus</td>
<td>0.11</td>
<td>0.23</td>
<td></td>
<td></td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Conepatus semistriatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Spilogale pygmaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Mephitis macroura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galictis vittata</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Lontra longicaudis</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uira barbara</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Artiodactyla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicotyles crassus</td>
<td>0.29</td>
<td>1.92</td>
<td>0.28</td>
<td>1.53</td>
<td>2.62</td>
<td>0.22</td>
</tr>
<tr>
<td>Odontocinus virginianus</td>
<td>0.03</td>
<td>2.82</td>
<td>1.39</td>
<td>2.13</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

Total no. of species per site | 19 | 13 | 14 | 14 | 18 | 12

1The study was performed using camera-traps and complimentary methods such the use of live traps.
2This study.
3CONANP (2011).
4Hernández-Pérez et al. (2015).
5Cortés-Marcial and Briones-Salas (2014).
6Pérez-Irineo and Santos-Moreno (2012).

Annotated list

Family Didelphidae

Didelphis marsupialis Linnaeus, 1758

Common Opossum

Figure 3A

Material examined. MEXICO • Multiple; Salto de Agua, Isla Concepción, El Castaño, Salto de Agua, Cerro Ber-...
in *D. virginiana*) and the length of the dark portion of
the tail, which reaches more than half in *D. marsupialis*.

Philander vossi Gardner & Ramírez-Pulido, 2020
Gray Four-eyed Opossum
Figure 3B

Material examined. MEXICO • Multiple; Salto de Agua, Isla Concepción, El Castaño, Salto de Agua; Cerro Bernal; 15°54′48.66″N, 093°36′19.62″W; first capture on 27 August 2015; camera trap photos. Recorded in various habitat types in all seasons. Very common in the study site. Recorded in various habitat types in all seasons.

Identification. This is a small marsupial. The color of the body varies from pale gray to black, and the face has darker hair in the form of a mask and a pair of white spots around each eye. Ventrally, including the bottom of the cheeks, the hair is whitish. The hair is relatively short (Castro-Arellano and Medellín 2014). Gardner and Ramírez-Pulido (2020) suggested using the name *P. vossi*, as the original name *Metachirus fuscogriseus palidus* (J. A. Allen, 1901) is pre-occupied by *Philander laniger pallidus* (Thomas, 1899).

Family Dasypodidae

Dasypus novemcinctus Linnaeus, 1758
Nine-banded Armadillo
Figure 3C

Material examined. MEXICO • Multiple; Ejido Ceniceros; Isla Concepción, El Castaño, Isla Tahití; Salto de Agua; Cerro Bernal; 15°06′16.07″N, 092°47′24.66″W; first capture on 12 September 2015; camera trap photos. Recorded in various habitat types in all seasons.

Identification. This is a medium-sized mammal and the only species of dasypodid found in Mexico (Hall 1981). Armadillos are the only mammal on the American continent whose body is covered with ossified dermal plates on the back, sides, tail, and top of the head, forming a carapace (Mendoza-Durán and Ceballos 2014a).

Family Myrmecophagidae

Tamandua mexicana (Saussure, 1860)
Northern Tamandua
Figure 3D

Material examined. MEXICO • Multiple; Isla Solo Tú; Isla Novillero; Laguna Campón; Cerro Bernal; 15°11′54.19″N, 092°51′55.88″W; first capture on 09 October 2015; camera trap photos. Recorded in various habitat types in all seasons.

Identification. This is a medium-sized mammal and the only species of dasypodid found in Mexico (Hall 1981). Armadillos are the only mammal on the American continent whose body is covered with ossified dermal plates on the back, sides, tail, and top of the head, forming a carapace (Mendoza-Durán and Ceballos 2014a).

Family Atelidae

Ateles geoffroyi Kuhl, 1820
Central American Spider Monkey
Figure 3E

Material examined. MEXICO • 1 ♂ and 1 ♀; Isla Concepción; 15°04′08.04″N, 092°45′19.29″W; capture on 30 August 2015. Opportunistic observation of two individuals in the southern area of REBIEN, in a fragment of arboreal vegetation (jungle-mangrove).

Identification. Elongated, with the extremities particularly long and thin and a prominent abdomen. The head is small, with the muzzle well marked. The hair color is variable, brown, dark-brown, or black, although the dark coloration is dominant. The thumb is vestigial or absent, which limits spider monkeys from handling food and objects like other primates (Silva 2014).

Family Leporidae

Sylvilagus floridanus (Allen, 1890)
Eastern Cottontail
Figure 3F

Material examined. MEXICO • 1 (sex unknown); El Castaño; 15°16′54.41″N, 092°57′03.87″W; capture on 16 December 2015; camera trap photo. Recorded in the northern area of REBIEN, in mangrove forest.

Identification. The coat is long and dense, brown to gray dorsally, and white on the belly and tail (Chapman et al. 1982; Ceballos and Galindo 1984). Due to its wide distribution, the diagnostic characteristics vary according to the location (Chapman et al. 1980).

Family Cuniculidae

Cuniculus paca (Linnaeus, 1766)
Lowland Paca
Figure 3G

Material examined. MEXICO • Multiple; Ejido Ceniceros; El Castaño, Isla Tahití; Salto de Agua; Cerro Bernal; 15°06′16.07″N, 092°47′24.66″W; first capture on 20 August 2015; camera trap photos. Recorded in various habitat types in all seasons.

Identification. This is the largest rodent of the Mexican tropics. The coat is light brown with four longitudinal rows of white spots on the sides. The body is robust, and the ears and tail are short; it has four digits on the forefeet and five on the hind feet (Ortega-R. and Arita 2014).

Family Dasyproctidae

Dasyprocta punctata Gray, 1842
Central American Agouti
Figure 3H

Material examined. MEXICO • Multiple; Ejido Ceniceros; El Castaño, Isla Tahití; Salto de Agua; Cerro Bernal; 15°06′16.07″N, 092°47′24.66″W; first capture on
30 August 2015; camera trap photos. Usually recorded in mangroves.

Identification. This is one of the largest rodents in Mexico. The body is slim and elongated, the ears are short, the tail is small and barely visible, and the hind feet are relatively longer than the forefeet and have three fingers. Usually the coat is rough and glossy, reddish-brown, yellowish-brown, or yellowish-gray, and it is relatively uniform on the back and sides, with fine blackish lines (Santos del Prado and Arita 2014).

Family Erethizontidae

Coendou mexicanus (Kerr, 1792)
Mexican Porcupine

Figure 4A

Material examined. MEXICO • 7 (sex unknown); Ejido Ceniceros; El Castaño; 15°15′03.90″N, 092°56′50.21″W; first capture on 06 December 2015; camera trap photos. Independent records in mangroves.

Identification. This is a large rodent with a robust body, similar in size to a medium-sized rabbit. The head and the ears are very small. The paws have four fingers (the fifth is vestigial) fitted with long and curved nails. The body is covered by white-yellowish spines, with dark tips mixed with long hair which is dorsally yellow to dark brown; the underside has shorter spines, which are flexible and scarce and mixed with light gray fur. The tail is long with few spines and black hair in the lower third; the tip is naked and is prehensile (Juárez-G. 2014).

Family Felidae

Herpailurus yagouaroundi (É. Geoffroy Saint-Hilaire, 1803)
Jaguarundi, Yaguarundi

Figure 4B

Material examined. MEXICO • Multiple ♂ and ♀; Laguna Campón, Isla Concepción, Isla Koakespala, El Castaño, Salto de Agua, Cerro Bernal; 15°16′54.41″N, 092°57′03.87″W; first capture on 14 October 2015; camera trap photos. Recorded in various habitat types in all seasons.

Identification. This is a small felid. Its coloration is uniform, but there are two basic colors: gray and reddish-brown with a variety of shades (da Silva et al. 2016). The body is slim and elongated, with a small head and a long tail (Aranda and Caso 2014).

Leopardus pardalis (Linnaeus, 1758)
Ocelot

Figure 4C

Material examined. MEXICO • 2 (sex unknown); Cerro Bernal; 15°54′48.66″N, 093°36′19.62″W; first capture on 12 December 2015; camera trap photos. Rare in the study area.

Identification. This is a medium-sized felid. The body is light sandy brown to pale yellow and grayish-white on the interior parts of the limbs. The body is entirely covered with black spots, which on the flanks become elongated rosettes with brown centers; these spots are commonly obliquely oriented. This species differs from the Margay (**L. wiedii** (Schinz, 1821)) in its greater size, shorter tail, and pattern of spots (Moreno and Aranda 2014).

Panthera onca (Linnaeus, 1758)

Figure 4D
Jaguar

Material examined. MEXICO • 1 ♀; Isla Rancho Viejo; Isla Mingo Hueso, Novillero; 15°27′44.93″N, 093°08′07.78″W; only record was 14 September 2015 by camera trap photos. Recorded within mangrove forests.

Identification. This is the largest American felid. The color of the fur varies from pale yellow to reddish-brown with white color gradations on the jowls, chest, and internal parts of the limbs. The body is entirely covered with black spots which form rosettes on the sides of the body; within these rosettes, there may be one or more small spots.

Family Canidae

Urocyon cinereoargenteus (Schreber, 1775)
Gray Fox

Figure 4E

Material examined. MEXICO • Multiple; Laguna Campón, Isla Concepción, Isla Koakespala, El Castaño, Salto de Agua, Cerro Bernal; 15°16′54.41″N, 092°57′03.87″W; first capture on 14 October 2015; camera trap photos. Recorded in various habitat types in all seasons.

Identification. This is a medium-sized canid. The throat is white and the face gray, and the sides of the neck, the abdomen and the base of the tail are reddish. The back is grayish. The tail is also gray on the top, with a black distal end and a mid-dorsal line of the same color. The colors of the upper and lower sides are delimited by a brown opaque band that runs along each side of the body (Servín and Chacón 2014).

Canis latrans Say, 1822
Coyote

Figure 4F

Material examined. MEXICO • Multiple; Laguna Campón, Isla Concepción, Isla Koakespala, El Castaño, Salto de Agua, Cerro Bernal; 15°54′48.66″N, 093°36′19.62″W; first capture on 10 September 2015; camera trap photos. Recorded in various habitat types in all seasons.

Identification. This is a medium-sized canid, similar to a thin German shepherd dog. The snout is elongated, and the eyes are small and relatively close together. The pelage varies from gray to reddish, passing through brown tones; the tail has a black tip. The underfur is always a lighter color. The ears are large and pointed (Servín et al. 2014)
Family Mephitidae

Conepatus leuconotus (Lichtenstein, 1832)
American Hog-nosed Skunk
Figure 4G

Material examined. MEXICO • Multiple; Salto de Agua, El Castaño, Salto de Agua, Cerro Bernal; 15°14′26.37″N, 092°56′10.83″W; first capture on 01 September 2015; camera trap photos. Recorded in various habitat types in all seasons.

Identification. This skunk species is similar in size to a large domestic cat. The fur is highly variable in color, but the body is usually black, with a wide white dorsal band running from the top of the head to the tail. The white band can be very narrow in some individuals. The nose is long, naked, and flexible (Mendoza-Durán and Ceballos 2014b).

Family Mustelidae

Galictis vittata (Schreber 1776)
Greater Grison
Figure 4H

Material examined. MEXICO • 2 (sex unknown); Ejido Ceniceros; 15°27′44.93″N, 093°08′07.78″W; first capture on 06 September 2015; camera trap photos. Two independents record within mangrove forests.

Identification. This mustelid is similar in size to a domestic cat, but the body is long and the legs and tail are very short. The neck is long, and the head is flat with small and rounded ears. The back is gray (white-haired), and there is a narrow white band on the forehead. The rest of the face, neck, belly, and limbs are black (Chávez 2014).

Lontra longicaudis (Olfers, 1818)
Neotropical River Otter
Figure 5A

Material examined. MEXICO • 1 (sex unknown); El Castaño; 15°15′03.90″N, 092°56′50.21″W; first capture on 21 December 2015; camera trap photo. Recorded within mangrove forests near a body of water.

Identification. This is a medium-sized otter. The body is long, slim, and with a cylindrical trunk. The width of the neck is equal to the width of the skull, and the head is flat and rounded. The pinna of the ear is small. The muzzle is short but wide. The legs have short feet with interdigital webbing. The tail is wide at the base and in transverse view, long and oval. The fur is soft, fine, and arranged in two layers: the first one consists of long and short hair, the second has soft and abundant short hair that protects the skin from water (Gallo and Casariego 2014).

Family Procyonidae

Nasua narica (Linnaeus, 1766)
White-Nosed Coati
Figure 5B

Observations. MEXICO • Multiple; Laguna Campón, Isla Concepción, Isla Koakespala, El Castaño, Cerro Bernal; 15°05′17.24″N, 092°46′31.32″W; first capture on 01 September 2015; camera trap photos. Recorded in groups (~20 individuals) in various habitat types in all seasons.

Identification. This is a medium-sized procyonid. The body is long and slender. The tail is long and often erect. The dorsal coloration varies from dark chestnut to reddish-brown or golden brown, the neck and shoulders tend to be golden chestnut (Valenzuela 2014a).

Procyon lotor (Linnaeus, 1758)
Northern Raccoon
Figure 5C

Material examined. MEXICO • Multiple; Laguna Campón, Isla Concepción, Isla Koakespala, El Castaño, Cerro Bernal; 15°15′03.90″N, 092°56′50.21″W; first capture on 28 August 2015; camera trap photo. Recorded in groups (~4 individuals) in various habitat types in all seasons.

Identification. This is a medium-sized procyonid with a robust body and short legs. The face has a black mask which covers the eyes and cheeks and extends from the nose to the forehead and across the middle of the eyes (Valenzuela 2014b). This is the only raccoon to occur in continental Mexico.

Family Tayassuidae

Dicotyles crassus (Merriam, 1901)
Collared Peccary
Figure 6D

Material examined. MEXICO • Multiple ♂ and ♀; Isla Tahiti; Isla Solo Tú; Cerro Bernal; 15°06′16.07″N, 092°47′24.66″W; first capture on 01 September 2015; camera trap photos. Recorded in groups only in the southern zone of REBIEN and Cerro Bernal.

Identification. The body is robust, the tail is vestigial, and the head is large. The canines are well developed, and the nose ends in a nasal disk. The legs are short and thin, and end in hooves (March and Mandujano 2014).

Family Cervidae

Odocoileus virginianus (Zimmermann, 1780)
While-tailed Deer
Figure 6E

Material examined. MEXICO • Multiple ♀ and ♂; El Castaño; Cerro Bernal; 15°15′03.90″N, 092°56′50.21″W; first capture on 17 November 2015; camera trap photos. We only recorded three individuals in the northern area of REBIEN. At Cerro Bernal we had 72 independent records.

Identification. The head and the neck are long and elongated. The legs are thin but strong. This cervid presents sexual dimorphism: only males have antlers, which are directed beyond and ahead of the skull, the main emerging branch has 2–6 ramifications. The tuft of white hairs on the base of the tail that bristles when it is excited
or running away characterizes the white-tailed deer (Galindo-Leal and Weber 2014).

Discussion

This is the first study that estimates richness and abundance of medium-sized and large mammal species in the REBIEN and SEPA protected areas on Mexico’s Pacific coast. The results of the interpolation and extrapolation curves (Fig. 6) can be considered as an accurate approximation of species richness of medium-sized and large mammals at these study sites. Although the two protected areas differ in their vegetation types and areas (INE 1999), of the 19 species recorded, 12 were found to occur at both sites, representing a species similarity of 75%. In instances such as this, an assessment of shared responses to environmental or spatial gradients and the natural history of the species are useful to identify the causes of this concordance (Ruiz-Gutiérrez et al. 2020), and additional study including biotic interactions and temporal and environmental variation at a fine scale may better explain the presence/absence of species in these areas (Rovero et al. 2014).

We also expect that the mammal richness at these areas...
ianus, N. narica, and Dicotyles crassus were the most abundant species, which coincides with results recorded in other tropical forests of Mexico, such as the Sierra Toilosoque and the Tepezquintle hill, two sites in Oaxaca (Pérez-Irineo and Santos-Moreno 2012; Cortes-Marcial and Briones-Salas 2014) (Table 2). Odocoileus virginianus, N. narica, and D. crassus predominate in several regions of Mexico (Valenzuela 1998; Bolaños and Narango 2001; González-Marín et al. 2008; Cortes-Marcial et al. 2014; Cruz-Jácome et al. 2015), likely due to their adaptability to disturbed environments or the plasticity of their feeding habits (Lowry et al. 2015).

Our study documented three species with relatively low RAI in both study sites: Panthera onca, Herpailurus yagouaroundi, and Leopardus pardalis. In contrast with results of some other studies, eight individuals of P. onca were reported in the Laguna de Terminos and Pantanos de Centla wetlands on the coast of the Gulf of Mexico (Hidalgo-Mihart et al. 2012), and the RAI of H. yagouaroundi in the El Edén Ecological Reserve (Torrres-Romero et al. 2017) and in the Chimalapas forest (Briones-Salas et al. 2016) was higher than that observed in our study. Trolle and Kéry (2003) and Di Bitetti et al. (2006), mentioned that populations of L. pardalis tend to be higher in better conserved areas than in those exposed to human activity. However, anthropogenic factors (social and economic) are the cause of changes and disturbances in the natural and physical environment in the REBIEN and the SEPA, where the human use and modification of natural resources and soil are the main causes of transformation of these areas (IDESMAC 2016).

We note that our data and analysis are from a specific period of time and that there may be other explanations for the presence and absence of some species and these may be due to population dynamics. However, human impacts on both natural areas negatively affect species presence. Many of the species that we recorded have been traditionally used by local people for food, and medicinal purposes, so many of them are now absent in the immediate vicinity of villages (Barrasa 2012). Finally, biodiversity knowledge of the conservation units is a basic requirement for management plans, conservation strategies, and studies on ecological patterns and species distribution (Estes et al. 2018). We demonstrate the importance of the REBIEN and the SEPA as refugia for medium-sized and large mammals on the Chiapas coast. Unfortunately, we observed the presence of people and domestic dogs in the photographs from camera traps, and we had cameras stolen at some sites. The presence of hunters and domestic dogs highlight the need for greater vigilance and control to reduce the impact of hunting and exotic species, as well as to develop environmental education programs in local communities.

Acknowledgements

We thank La Encrucijada Biosphere Reserve and the Sanctuary Beach of Puerto Arista, and in particular R.
Paredes-Montesinos for the facilities granted. Likewise, we thank F. Ruiz-Gutiérrez, E. Vázquez-Arroyo, U. Hernández-Sarabia, and the people of each locality for their help in the field. The financing of this study was supported by the Program for the Conservation of Species at Risk (PROCER), with the project “Conservation of the jaguar (P. onca) and other felines in the La Encrucijada Biosphere Reserve and the Puerto Arista Estuarine System”. C. Chávez had support of Sistema Nacional de Investigadores and UAM-Lerma project (agreement 15.19.3) while conducting this research.

Authors’ Contributions
Conceptualization: CC, JCHH. Data curation: JCHH. Formal analysis: JCHH, CC. Funding acquisition: CC. Investigation: JCHH, CC. Methodology: CC, JCHH. Supervision: CC. Writing – original draft: JCHH, CC. Writing – review & editing: JCHH, CC.

References

