New occurrences for the flora of Lebanon: *Sideritis syriaca* subsp. *nusairiensis* (Post) Hub.-Mor. (Lamiaceae) and *Thymus sipyleus* Boiss. (Lamiaceae) and consideration on their distribution, natural habitats, and conservation status

Hicham El Zein¹, Amalric Pouzoulet²

¹ Independent researcher, Beirut, Lebanon; hichamelzein@gmail.com, https://orcid.org/0000-0001-7541-9509
² Independent researcher, London, United Kingdom; amalricpouzoulet@gmail.com

* Corresponding author

Abstract
Investigations carried out during 2019 on the vascular flora of Jabal Akroum, the northernmost part of the Mount Lebanon range near the Syrian border, yielded two new records of Lamiaceae species for the flora of Lebanon: *Sideritis syriaca* subsp. *nusairiensis* (Post) Hub.-Mor. and *Thymus sipyleus* Boiss. We present findings on the distribution and ecology of these species as well as their conservation status at the national level in accordance with International Union for the Conservation of Nature guidelines. We also report on the natural habitats of Jabal Akroum.

Keywords
Akkar, endemism, Lamiaceae, Red List, northeastern Mediterranean

Academic editor: Luana Calazans | Received 2 October 2020 | Accepted 22 December 2020 | Published 15 January 2021

Citation: El Zein H, Pouzoulet A (2021) New occurrences for the flora of Lebanon: *Sideritis syriaca* subsp. *nusairiensis* (Post) Hub.-Mor. (Lamiaceae) and *Thymus sipyleus* Boiss. (Lamiaceae) and consideration on their distribution, natural habitats, and conservation status. Check List 17 (1): 103–114. https://doi.org/10.15560/17.1.103

© The authors. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Sideritis L. is a Western Palaearctic genus of Lamia-ceae that includes 193 perennial and annual species distributed in the Mediterranean, the Canary Islands, and Madeira (Gonzalez-Burgos et al. 2011; Dülgeroğlu 2017). Seven taxa of *Sideritis* have been recorded from Lebanon (Post and Dinsmore 1932; Mouterde 1984; Tohme 2014): *Sideritis balansae* Boiss., *Sideritis curvidens* Stapf, *Sideritis libanotica* Labill., *Sideritis montana* subsp. *montana* L., *Sideritis montana* subsp. *remota* (d’Urv.) P. W. Ball, *Sideritis perfoliata* L., and *Sideritis pullulans* Vent.

Sideritis syriaca L., belongs to *Sideritis* sect. *Empedoclia* (Rafin.) Bentham which includes two taxa, *S. syriaca* subsp. *syriaca* and *S. syriaca* subsp. *nusairiensis* (Post) Hub.-Mor. Both these subspecies are endemic to the northeastern Mediterranean, mainly Turkey (Esra et al. 2009). There have been some discussions about the taxonomy of *S. syriaca* in the past. In Flora Europaea (Tutin et al. 1972), *S. syriaca* sensus lato included *Sideritis cretica* Boiss. (not *Sideritis cretica* L.), *S. raeseri* Boiss. et Heldr., *S. sicula* Ucria, and *S. taurica* Stephan ex Willd., whereas other taxonomists considered these taxa as separate species (Davis et al. 1965). *Sideritis syriaca* subsp. *syriaca* has recently been considered as exclusively endemic to Crete (Euro+Med 2019; WCSP 2020).
Only the taxonomy of Bulgarian subpopulations remains uncertain. Recent chemotaxonomic and morphometric studies have proven that Bulgarian *S. syriaca* is closer to Turkish *S. taurica* and suggest further verification of the taxonomic status of the Balkan subpopulations (Stanoeva et al. 2015; Aneva et al. 2019).

Previously known as *Sideritis nusaiensis* Post, *S. syriaca* subsp. *nusaiensis* was described based on an 1890 collection of Georges Post in Masyaf (Qalaat el-Musyaf) in the western mountains of Syria (historically called Nusayriyah Mountains or Jibal al-Ansaria) (Post and Dinsmore 1932; Davis et al. 1965). The taxon is currently considered to be endemic to Turkey and Syria. In Turkey, it is distributed in the Nur Mountains (historically known as Amanus) and Jabal Aqrâ (historically called Mount Casius, Kılıç Dagi in Turkish). In Syria, the taxon only occurs in the western mountain range and was collected several times in Slenfé, Nabi Mata (above Slenfé), Jaoubat Bourghal, and Masyaf.

One of the eight richest genera of the Lamiaceae, *Thymus* L. is a Western Palaearctic genus that includes around 215 species distributed across Greenland, Europe, the Mediterranean, East Africa, the Himalayas, and Siberia (Morales 1997). Two species of *Thymus* have been recorded in Lebanon: *Thymus hirsutus* Bieb. and *T. syriacus* Boiss. (Mouterde 1984; Tohme 2014). *Thymus sipyleus* Boiss. is included in *T.* sect. *Thymbropsis* Jalas ex R. Morales (Morales 1997). It was described in Diagnoses Plantarum Orientalium novarum from the holotype, which was collected in Mount Sipylus (Spil Dağı) in Manisa province in Turkey’s Aegean Region (Boissier 1844; Davis 1965). The species is distributed in the Greek East Aegean Islands, Turkey, and the countries of the Caucasus, namely Georgia, Armenia, Azerbaijan, and North Ossetia-Alania (Euro+Med 2019; GBIF 2019). The southernmost edge of the range of *T. sipyleus* was historically Mount Casius (Davis et al. 1965; Mouterde 1984).

As a result of its unique position in the Levant, its complex topography and rugged mountainous terrain (Khawlie et al. 2002), Mount Lebanon constitutes a mosaic of natural habitats sheltering a significantly high biodiversity (Talhouk et al. 2018). Impacted by intense human activities and important demographic, Mount Lebanon, Anti-Lebanon, and the neighbouring Levantine regions are nevertheless biodiversity hotspots of the Mediterranean Basin, but also among the most threatened (Medail et al. 1997). Recent studies on important plant areas (IPAs) (Bou Dagher-Kharrat et al. 2018) and key biodiversity areas (KBA) (Valderrábano et al. 2018) highlighted the importance of the northern region of the Governorate of Akkar for its considerable floristic richness and high rate of endemism. Identified as an IPA and a KBA, this region includes the watersheds of Nahr el-Kebir, Wadi Khaled, and Jabal Akroum.

The river Nahr el-Kebir marks a natural border between Lebanon and Syria where regional tensions discourage exhaustive visits to this securitized area (Hutson et al., 2011; Mouawad 2018). Geologically unique due to its basaltic bedrock, Nahr el-Kebir is situated at the northern end of the ridges of Mount Lebanon (Akkermans 2003) where it makes a boundary between the mountainous Akkar region and the plain of Homs in Syria. Often referred to as the Homs/Akkar Gap, this area is known to host very restricted endemic plant species, namely *Vicia hyaenisycamus* Mt. (Fabaceae) and *Lathyrus basalticus* Rech.f. (Fabaceae) (Mouterde 1984). A recent study also reported the discovery of a new highly restricted endemic species in the area, *Isoetes libanotica* Musselman, Bolin & R.D.Bray (Isoetaceae), which highlights how little is known about the local flora (Bolin et al. 2011). The nearby mountain of Jabal Akroum constitutes the northernmost mountain of the Mount Lebanon range. Located immediately westward of Nahr el-Kebir, Jabal Akroum is the final mountain before the Mount Lebanon range descends into the Homs/Akkar gap (Fig. 1). Jabal Akroum remains largely underexplored by biologists. *Sideritis syriaca* subsp. *nusaiensis* (Post) Hub.-Mor. (Lamiaceae) and *Thymus sipyleus* Boiss. (Lamiaceae) were found there.

Methods

In November 2019 and August 2020, six days and one day of fieldwork, respectively, were carried out for investigation on the floristic diversity and associated natural habitats of Jabal Akroum (Appendix). This mountain rises between 300 to 1260 m in altitude and is oriented north–south with bedrock composed of limestone. The geographic coordinates of the species were recorded in the field. We used Mouterde (1984) as a reference for species identification and distribution, as well as the floras of Syria (Post and Dinsmore 1932), Turkey (Davis et al. 1965), and Europe (Tutin et al. 1972). Familial classification and synonyms were updated in accordance with the information sourced from the International Plant Names Index, the World Checklist of Selected Plant Families (INPI and WCSP 2020), and the Euro-Mediterranean plant diversity which integrates data from Flora Europaea, Med-Checklist, Flora of Macaronesia and from regional and national floras and checklists from the area as well as additional taxonomic and floristic literature (Euro+Med 2019). We prepared the maps using QGIS software (QGIS.org 2020) using layers available from DIVA-GIS (2017) website. The area for each identified habitat and percentage of area covered was drawn and calculated using QGIS. The assessments for both species were made following the guidelines of the International Union for Conservation of Nature (IUCN) Red List categories and criteria (IUCN Standards and Petitions Committee 2019). The collected specimens were given to the Post Herbarium located in the American University of Beirut (BEI).
Results

Figures 2–4

New record. LEBANON • Akkar, Jabal Akroum; 34.5208°N, 036.3102°E; 1300 m elev.; 14-xi-2019; fl.; H. El Zein (BEI-HELB-403).

Phenology. The flowering period extends from summer to the early fall. Due to warm weather throughout November 2019, some individuals were flowering which allowed for accurate species identification.

Identification. *Sideritis syriaca* subsp. *nusairiensis* is a shrub reaching 20 to 80 cm in height. Woolly plant, white tomentose eglandular indumentum. **Leaves** 1–2 × 3–6 cm, basal and low leaves ovate with spatulate petiole, fine or indistinctly crenate-denticulate, cauline leaves sessile, obovate to oblong. **Inflorescence** 3–8 verticillasters, 6-flowered; middle bracts orbicular, 0.6–1 cm, mucronate (mucro 1–5 mm); **Calyx** 7.5–9 mm long, densely white-tomentose, teeth triangular-lanceolate, 2.0–2.5 mm, acute. **Corolla** yellow, 8–11 mm long, hairy and with burgundy ribs inside.

Habitats. The species was observed in 28 different quadrats and a total of 337 individuals sparsely scattered were counted along the crest over 10 km (Table 1), occurring...
in open areas on rocky limestone substrates in different types of habitat. Around 87% of the observed individuals occurred in three habitats: phrygana (43.50%), oak garrigue (29.25%) and oak matorral (14.25%). The rest of the individuals were distributed between juniper woodlands, pine woodlands and matorrals, oak woodlands and grasslands (Fig. 5).

Conservation status. Nationally assessed as Critically
Table 1. Geographic coordinates in decimal degrees (WGS84) of the individuals of *Sideritis syriaca* subsp. *nusairiensis* (Post) Hub.-Mor. observed on Jabal Akroum in November 2019 and the types of habitat in which they were observed.

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>Individual count</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.5208</td>
<td>036.3102</td>
<td>1050</td>
<td>10</td>
<td>Juniperus excelsa arborescent matorrals</td>
</tr>
<tr>
<td>34.5441</td>
<td>036.3216</td>
<td>1175</td>
<td>5</td>
<td>Kermes oak woodland</td>
</tr>
<tr>
<td>34.5454</td>
<td>036.3205</td>
<td>1162</td>
<td>4</td>
<td>Juniperus excelsa arborescent matorrals</td>
</tr>
<tr>
<td>34.5518</td>
<td>036.3190</td>
<td>1052</td>
<td>1</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5523</td>
<td>036.3180</td>
<td>1033</td>
<td>5</td>
<td>Pinus brutia forests</td>
</tr>
<tr>
<td>34.5534</td>
<td>036.3180</td>
<td>1009</td>
<td>3</td>
<td>Pinus brutia forests</td>
</tr>
<tr>
<td>34.5552</td>
<td>036.3181</td>
<td>1017</td>
<td>5</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5580</td>
<td>036.3199</td>
<td>1045</td>
<td>7</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5606</td>
<td>036.3202</td>
<td>1030</td>
<td>6</td>
<td>Evergreen oak arborescent matorrals</td>
</tr>
<tr>
<td>34.5696</td>
<td>036.3236</td>
<td>1014</td>
<td>5</td>
<td>Mediterranean tall-grass</td>
</tr>
<tr>
<td>34.5713</td>
<td>036.3268</td>
<td>1105</td>
<td>1</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5742</td>
<td>036.3280</td>
<td>1079</td>
<td>10</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5746</td>
<td>036.3303</td>
<td>1052</td>
<td>2</td>
<td>Evergreen oak arborescent matorrals</td>
</tr>
<tr>
<td>34.5749</td>
<td>036.3277</td>
<td>1059</td>
<td>15</td>
<td>Evergreen oak arborescent matorrals</td>
</tr>
<tr>
<td>34.5753</td>
<td>036.3271</td>
<td>968</td>
<td>15</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5792</td>
<td>036.3270</td>
<td>956</td>
<td>15</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5806</td>
<td>036.3278</td>
<td>962</td>
<td>10</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5828</td>
<td>036.3281</td>
<td>941</td>
<td>25</td>
<td>Eastern kermes oak garrigues</td>
</tr>
<tr>
<td>34.5852</td>
<td>036.3301</td>
<td>937</td>
<td>25</td>
<td>Evergreen oak arborescent matorrals</td>
</tr>
<tr>
<td>34.5965</td>
<td>036.3315</td>
<td>813</td>
<td>3</td>
<td>Phrygana</td>
</tr>
<tr>
<td>34.6006</td>
<td>036.3320</td>
<td>825</td>
<td>3</td>
<td>Phrygana</td>
</tr>
<tr>
<td>34.6040</td>
<td>036.3325</td>
<td>841</td>
<td>40</td>
<td>Phrygana</td>
</tr>
<tr>
<td>34.6052</td>
<td>036.3328</td>
<td>808</td>
<td>25</td>
<td>Phrygana</td>
</tr>
<tr>
<td>34.6064</td>
<td>036.3320</td>
<td>785</td>
<td>35</td>
<td>Phrygana</td>
</tr>
<tr>
<td>34.6072</td>
<td>036.3326</td>
<td>791</td>
<td>6</td>
<td>Pinus brutia arborescent matorrals</td>
</tr>
<tr>
<td>34.6080</td>
<td>036.3328</td>
<td>782</td>
<td>36</td>
<td>Phrygana</td>
</tr>
<tr>
<td>34.6083</td>
<td>036.3320</td>
<td>770</td>
<td>6</td>
<td>Pinus brutia arborescent matorrals</td>
</tr>
<tr>
<td>34.6208</td>
<td>036.3409</td>
<td>727</td>
<td>5</td>
<td>Phrygana</td>
</tr>
</tbody>
</table>

Endangered, Blab(iii), in Lebanon (Supplementary File 1: IUCN Red List Assessment); globally assessed as being of Least Concern.

Thymus sipyleus Boiss., Diagn. Pl. Orient. 5: 16. (Boissier 1844)

Figures 6–8

New record. LEBANON • Akkar, Jabal Akroum; 34.5580°N, 036.3193°E; 1045 m elev.; 14-viii-2020; fl.; H. El Zein (BEI-HELB-493).

Phenology. The flowering period extends from June to August.

Identification. Several individuals of *Thymus sipyleus* were observed (Table 2). Cespitous, low, woody, branching, creeping subshrub forming dense cushions, 10–20 cm in height. Leaves 3–4 mm long, ovate, sparingly visible at the base, tightly imbricate decussate, with a few oil dots. Inflorescence a compact head with floral bracts similar to leaves and 2-flowered verticillasters. Calyx. 3.0–3.8 mm, with equal lips equaling the tube, calyx throat strongly bearded. Corolla pink. Due to intense grazing, the plants formed very low patches on the rocky ground.

Habitats. Individuals were sparsely scattered along the crest of Jabal Akroum over 3 km. They were always observed in open areas on rocky limestone substrates in different types of habitat between 943 and 1170 m of altitude (Table 2). Three hundred individuals of *Thymus sipyleus* were observed in kermes oak garrigues located on the crest. In this area, grazing had been more intense and was still ongoing. Many flocks were encountered there even though November is beyond the traditional summer grazing season. Other scattered individuals were found further South in oak arborescent matorrals (Fig. 5). This habitat was relatively well preserved and spared from wood cutting and grazing.

Conservation status. Nationally assessed as Critically Endangered, Blab(iii), in Lebanon (Supplementary File 2: IUCN Red List Assessment); globally assessed as being of Least Concern.

Discussion

Although never reported in Lebanon, *Sideritis syriaca* subsp. *nusairiensis* is an Eastern Mediterranean element (Davis et al. 1965) endemic to Turkey and Syria. Its native to the area is suggested by its phytogeography, as the species has a similar pattern of distribution to that which is common among Eastern Mediterranean species endemic to the Levantine Mountains. It is distributed between the Nur Mountains, the Jabal Agra, and the Syrian coastal mountains. The region of Kahramanmaraşes, the meeting point between Nur Mountains and the Eastern Taurus range, constitutes the northernmost edge of its range. The last known southernmost edge of distribution was Masyaf, which is located only 22 km away from the closest point on Jabal Akroum. Moreover, the Syrian and Turkish subpopulations share the same habitat and ecology (Davis et al. 1965; Mouterde 1984), namely rocky habitats on limestone bedrock. The presence of the species in remote and extreme habitats on the crest all along the Jabal Akroum dismisses the possibility for human introduction. Other plant species endemic to the Levant have the same pattern of distribution. This is the case of *Sideritis libanotica*, also a perennial mountain species of the same genus, which occurs in Mount Lebanon, Anti-Lebanon (including Mount Hermon), the Syrian coastal range, and Jabal Agra (Davis et al. 1965; Mouterde 1984; Euro+Med 2019). Therefore, it can be considered that *Sideritis syriaca* subsp. *nusairiensis* is native to Jabal Akroum but has not been previously collected.

Thymus sipyleus is also an Eastern Mediterranean element (Davis et al. 1965) but with a broader distribution than *Sideritis syriaca* subsp. *nusairiensis* and occurs from western Turkey to the Caucasus. The native to this species is also possible as suggested by phytogeographical argument. *Thymus sipyleus* has a pattern of distribution typical of some species endemic to the Eastern Mediterranean region and the Caucasus. It is distributed from the mountains of the Greek East Aegean Islands and Turkey to the Caucasus. However, there is a disjunction of distribution between Jabal Agra, the last known southernmost edge of distribution, and Jabal

...
Akroum, the new southernmost edge. The species was never reported in the Syrian Coastal range, but it could potentially occur within it due to the geographic position of its range and the existence of the same natural habitats as the ones observed in Jabal Akroum. The Greek and Turkish subpopulations also thrive in rocky habitats on limestone bedrock (Mouterde 1984). Additionally, other species of the genus *Thymus* have a similar distribution, such as *T. hirsutus*, which is extant from the Greek mountains and Turkey to the Nur mountains, the Syrian
coastal range, and Mount Lebanon (Davis et al. 1965; Mouterde 1984; POWO 2020). Lastly, the presence of the species in remote and extreme habitats on the crest of Jabal Akroum dismisses the possibility of human introduction. It can therefore be considered that the species is native to Jabal Akroum but has not previously been identified.

The discovery in Jabal Akroum of two plant species endemic to the Eastern Mediterranean region highlights the need for further investigation on the native flora in Mount Lebanon, especially in understudied regions such as the North of the mountain range located in the district of Akkar. The distribution patterns of both species are common for endemic vascular plants of the Eastern Mediterranean and the Levant and it is here proposed that *S. syriaca* subsp. *nusairiensis* and *T. sipyleus* are native to Mount Lebanon and have not been reported due to gaps in knowledge about the local flora. These records constitute the new southernmost edges of the ranges for both species. Not only do these findings increase the number of recognized taxa of *Sideritis* and *Thymus* in the Lebanese flora, but they are also of phytogeographical importance for understanding the affinities between the flora of the Mount Lebanon range, the Syrian coastal range, the Nur mountain range, and the Taurus range. Molecular phylogeographic studies could make a valuable contribution to understanding the lineage of *T. sipyleus* and of the different taxa of *S. syriaca* in the Eastern Mediterranean. Regarding the threat of over-grazing that is affecting Jabal Akroum in Lebanon, both species were considered as Critically Endangered in Lebanon. Jabal Akroum is the sole locality in which these species occur in Lebanon, and it is therefore the most important site for the preservation of these species.

Acknowledgements

Many thanks to Carla Khater, Johnny Fenianos, and Alexandre Cluchier for their support in writing this paper and for their valuable comments prior to its publication. Thank you, David Allen, for reviewing the Red List assessments, and many thanks to Nadda Sinno and Reem Kawtharani for their help in receiving and mounting the specimens for the Post Herbarium in Beirut. The authors have no support or conflicts of interest to report.

Authors’ Contributions

HE and AP carried out the fieldwork. HE collected the specimens, photographed and identified the species, made the distribution maps, and wrote the text. AP revised the text as a native English speaker. We thank the subject editor, Luana Calazans, the editor, Robert Forsyth, and the anonymous reviewers for their helpful comments on the manuscript.

References

Boissier E (1844) *Thymus sipyleus* L.: Diagnoses plantarum Orientalium novarum (Serie 1, 5). Typis Ferdinandi Ramboz, Geneva, Switzerland, 16.

Bolin JF, Bray RD, Musselman LJ (2011) A new species of diploid...

Habits of Jabal Akroum. Most of Jabal Akroum was explored, including the crest which has a length of approximately 20 km. The west-oriented slopes of Jabal Akroum are characterised by a dense pine forest located in the municipality of Andqet. This forest is characterised by its good state of conservation as constructions are absent from the western slopes. It constitutes one of the largest forests of Pinus brutia in Lebanon. Only two roads cross through the slopes, leading to the other side of the mountain. The east-oriented slopes of Jabal Akroum, less steep, are impacted by human activities and urbanization. Woodlands are sparse and natural habitats are fragmented by roads and many constructions. Ten villages are found on this side of the mountain, including the village of Akroum. The crest is only partly preserved and mostly deforested, over-grazed and exhibits sparsely vegetated areas of garrigues with rocky outcrops in many places. The bedrock is composed of limestone.

Eight types of natural habitats (Figs. 5, A1) were identified on Jabal Akroum during the survey (EUNIS (2012) habitat code in brackets). Pinus brutia pine woodlands (G3.75) covered 17% of the area and were spotted exclusively on the western slopes of Jabal Akroum. Pinus brutia arborescent matorral (F5.144) covered more than 8% of the area and was spotted on the upper western slopes as transitional habitat between the pine forest and the crest or as a degraded stage of the pine woodlands. Quercus cocciifera (locally known as Quercus

Appendix

INDEX SINE NOMINUM. Thymus (Lamiaceae) from Turkey. Caryologia 62 (3): 188–197.

calliprinos) oak arborescent matorral (F5.114) covered 15% of the area, oak garrigue (F6.21) covered 10%, and oak woodlands (G2.13) covered 8% and were spotted along the crest and on the eastern slopes of the mountain. In the oak woodland and oak arborescent matorral, the associated dominant tree species were Pistacia palaestina and Phillyrea latifolia, along with Juniperus oxycedrus shrubs. In oak garrigue habitat resulting from the degradation of evergreen forests, the same species are reduced to dwarf shrubs, not exceeding 1 m in height and with a low density. Phrygana of Sarcopoterium spinosum covered 19% of the area and exclusively thrived on the northern part of the mountain which has the lowest altitude, ranging between 300 to 850 m. Juniperus excelsa arborescent matorral (F5.1331) covered 10% of the area and was exclusively spotted on the southern part of the mountain, which has the highest altitude, ranging between 1100 and 1260 m. It is characterised by sparse trees of Juniperus excelsa in pure stands or associated with Quercus coccifera, which constitute a unique and rare association in Lebanon. This habitat is threatened as J. excelsa is a nationally endangered species due to illegal wood exploitation (Douaihy et al. 2016). Grasslands (E1.4) constituted spots scattered through the crest and eastern slopes and occupied a total of 4% of the area of the mountain. They were by far dominated by Dactylis glomerata, and secondarily by Phleum montanum. Remaining patches of woodland of Quercus ithaburensis subsp. ithaburensis were spotted in the northern part of the mountain, covering less than 1%. This habitat is rare in Lebanon and occurs exclusively in this very northern area of Akkar, between Jabal Akroum and Nahr el-Kebir. Other patches were reported in the south of the country around Sarada (Mouterde 1966). More than 8% of the area of Jabal Akroum is urbanised (Fig. A2).