New records of lichenized fungi in Sierra Nevada de Santa Marta, Colombia

Kevin Ramírez-Roncallo, Hugo Gómez-Ramírez, María A. Negritto

Universidad del Magdalena, Grupo de Investigación en Manejo y Conservación de Fauna, Flora y Ecosistemas Estratégicos Neotropicales – MIKU, Carrera 32 # 22-08 Sector San Pedro Alejandrino, Santa Marta D.T.C.H., Magdalena, 470004, Colombia.

Corresponding author: Kevin Ramírez-Roncallo, kramirezroncallo@gmail.com

Abstract
The lichen diversity of the Caribbean region of Colombia is one of the least known in the country. In the Sierra Nevada de Santa Marta (SNSM), whose forests are at risk of disappearing due to deforestation, 114 species of lichens have been recorded. We collected lichens at elevations from 500 to 2500 m on the northwestern slopes of the SNSM, and we report six genera and 19 species from this region for the first time. Our results highlight the importance of exploring new areas to enhance our knowledge of the lichens of SNSM and Colombia.

Keywords
Coffee crops, epiphytic lichens, sub-Andean forest, Neotropics.
geophysical characteristics make SNSM a region of great biological richness, with a wide variety of ecosystems that host a significant number of endemic species (Vásquez and Serrano 2009). It is a territory with great socio-cultural diversity, as it is home to several ethnic groups (Arhuaco, Kogi, Wiwa, Kankuamos, and Chimilas), peasants, fishermen, and urban populations (Arias Arias 2011). Historically, there have been several colonization events that resulted in the establishment of heterogeneous communities of settlers from Tolima, Huila, the Santanderes region, and even from other countries, who found fertile lands for commercial agriculture. Since the 19th century, coffee cultivation has been one of the main economic activities in the SNSM, and the product is recognized for its high quality (Viloria de la Hoz 2002). Coffee crops cover 20,000 ha and coffee trees are planted in the shade of larger trees. In addition, the strong pressure of the anthropogenic activities of the region have accelerated deforestation in the SNSM (Rangel-Ch. and Garzon-C. 1995), which has been very marked in recent years (IDEAM 2019), since the signing of peace treaties. This is one of the main drivers of the loss of habitat for lichens (Rangel-Ch. 2000; Aguirre-C. and Rangel-Ch. 2008). The concurrence of foreign tourism and the establishment of foreigners in the region have also contributed to human disturbances to the environment.

Knowledge about lichen species composition in the SNSM is still insufficient; research was conducted more than 50 years ago by Mägdefrau and Winkler (1967), Nowak and Winkle (1970), and Sipman (1984), which focused mainly on the north face of the mountain range. In this mountainous system, 52 genera and 114 species have been recorded so far (Bernal et al. 2020). Here we provide the results of the first explorations carried out on the northwestern slopes of the SNSM; we present data for 19 newly recorded species on this massif and the Magdalena. We include notes on the distribution and habitat of these species, and illustrations of their characteristics.

Methods

Study area. The northwestern slope of the SNSM, located in Magdalena department (Fig. 1), is characterized by a diversity of ecosystems: tropical dry deciduous forest.

Figure 1. Map showing the study area and location of the new records.
and thorny and succulent thickets (8–180 m a.s.l.), tropical semi-deciduous forest (180–600 m a.s.l.), sub-desert ombrophilous forest (600–1800 m a.s.l.), and Andean forest (1800–2800 m a.s.l.) (Pérez Preciado 1984). The area is also characterized by a great variety of climates: arid warm, warm dry, warm humid, very humid temperate, and very humid cold (Tamarís-Turizo and López-Salgado 2006) and a unimodal-biseasonal rainfall pattern, with a longer period of precipitation between May and November, and lower precipitation from December to April (Rangel-Ch. and Carvajal-Cogollo 2012).

Sampling. Samples were collected from the forests and coffee crops of the study area, in an elevation gradient from 500 to 2500 m a.s.l., applying the opportunistic sampling method (Sipman 1996). The collection was manual, using a razor to separate the sample from the substrate. Samples were stored in paper bags, where field data were also recorded. The material was stored in a freezer at −20 °C for two days to remove invertebrates; later it was dehydrated at room temperature and stored in acid-free paper envelopes with their respective label.

Identifications. Taxonomic keys were used to identify the material. For identification of genera, keys such as Sipman (2005) and Cáceres (2007) were used. In addition to illustrations, descriptions and expert collaboration from the Grupo Colombiano de Lichenología (GCOL), specialized keys and monographs were used for species identification: Stereocaulon Hoffm. (Boekhout 1982; Sipman 2002; Rincón-Espitia and Mateus 2013); Heteroderma Trevis. and related taxa (Moberg 2011; Mongkolsuk et al. 2015; Díaz-Escandón 2017); Ramalina Ach. (Gumboski 2016); Coenogonium Ehrenb. (Rivas-Plata et al. 2006); Bulbothrix Hale (Benatti 2012, 2014). Chemical tests with 10% aqueous potassium hydroxide (K) and 6% sodium hypochlorite (C) were performed. Additionally, the diagnostic features of each species were photographed using a stereoscope Zeiss SteREO Discovery V8 equipped with a Zeiss Axiocam ERC 5s microscope camera. The specimens were deposited in the Centro de Colecciones Biológicas de la Universidad del Magdalena (CBUMAG; acronym after Thiers 2016).

Data deposition. The data underpinning the analysis reported in this paper are deposited at GBIF, the Global Biodiversity Information Facility, and are available at https://doi.org/10.15468/8gkkz3 (Ramírez-Roncallo et al. 2020).

Results

Six genera were recorded for the first time for SNSM: Bulbothrix (Parmeliaceae), Chrysothrix Mont. (Chrysothriceae), Coenogonium (Coenogoniaceae), Dibaeis Clem. (Icmadophilaceae), Heteroderma, and Polyblasticidium Kalb (Physciaceae). Additionally, 19 species were recorded for the first time; data on their distribution in Colombia and the SNSM, and their diagnostic features are provided.

Bulbothrix ventricosa (Hale & Kurok.) Hale

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Bella Vista village, Villa Kelly coffee farm; 11°05.67′N, 074°04.87′W; 1550 m a.s.l.; 28 Jun. 2017. K. Ramírez Roncallo leg.; KRR 231; CBUMAG:LIC:417 • Santa Marta, locality of Minca, Bella Vista village, Villa del Sol coffee farm; 11°05.95′N, 074°04.75′W; 1600 m a.s.l.; 29 Jun. 2017. K. Ramírez Roncallo leg.; KRR 431; CBUMAG:LIC:603; KRR 442; CBUMAG:LIC:614.

Identification. Thallus laciniate and corticolous, with laminar to marginal ciliary bulbs. Isidia abundant and concolorous, brown to black lower cortex, and presence of noddistic acid in the medulla (K + yellow → orange) (Benatti 2012).

Ecology and distribution. Bulbothrix ventricosa was recorded only in the Central Cordillera in Risaralda department, at between 1500 and 1725 m a.s.l., but its presence is assumed for the rest of the Colombian Andean region (Wolf 1993; Bernal et al. 2020). In the SNSM it was found on bark in coffee crops in sub-Andean forest between 1550-1600 m a.s.l.

Chrysothrix candelaris (L.) J.R. Laundon

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Cerro Kennedy, San Lorenzo zone; 11°06.14′N, 074°03.70′W; 2410 m a.s.l.; 31 Jul. 2015. K. Ramírez Roncallo leg.; KRR 28; CBUMAG:LIC:193.

Identification. Thallus crustose, leprous, irregularly growing, composed of scattered and continuous granules, bright yellow, usually with orange or greenish shades; soralia present on the entire surface (Laundon 1981).

Ecology and distribution. Chrysothrix candelaris was recorded in the departments of Antioquia, Boyacá, Cauca, Cundinamarca, Huila, and Tolima, in lowlands and moors, at between 110 and 3130 m a.s.l., on bark and leaves (Sipman 1997; Sipman et al. 2000; BGBM 2016; Raz and Agudelo 2019; Bernal et al. 2020). In SNSM, this species was found on bark, in the Andean forest, at 2410 m a.s.l.

Coenogonium linkii Ehrenb.

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Cerro Kennedy, San Lorenzo zone; 11°06.26′N, 074°03.53′W; 2500 m a.s.l.; 17 Aug. 2016. K. Ramírez Roncallo leg.; KRR 187; CBUMAG:LIC:359 • Santa Marta, locality of Minca, La Tagua village; 11°05.75′N, 074°04.42′W; 1830 m a.s.l.; 17 Aug. 2016. K. Ramírez Roncallo leg.; KRR 190; CBUMAG:LIC:362 • Santa Marta, locality of Minca, Bella Vista village, Villa Kelly coffee farm; 11°05.67′N, 074°04.87′W; 1550 m a.s.l.; 28 Jun. 2017. K. Ramírez Roncallo leg.; KRR 237; CBUMAG:LIC:409.

Identification. Thallus filamentous, forming a shelf-like structure, projecting more or less perpendicular to the
substrate; filaments compact; surface bright green, ecor
ticated. Apothecia yellow-orange and ascospores irregu
dularly uniseriate (Rivas-Plata et al. 2006).

Ecology and distribution. Coenogonium linkii was re
corded in the departments of Antioquia, Cauca, Cesar,
Córdoba, Cundinamarca, La Guajira, Meta, Nariño,
Santander, and Valle del Cauca, in lowlands in pre-
montane and humid forest at between 35 and 2500
m a.s.l. on bark and leaves (Soto Medina and Bolaños
2010; Rincón-Espitia et al. 2012; BGBM 2016; Raz and
Agudelo 2019; Bernal et al. 2020). In SNSM it was found
on bark and leaves in secondary forests and coffee crops
of the sub-Andean forest, from 1550 to 2500 m a.s.l.

Dibaeis columbiana (Vain.) Kalb & Gierl
Figure 2D

Materials examined. COLOMBIA • Magdalena: Santa
Marta, locality of Minca, San Lorenzo zone; 11°06.71’N,
074°03.27’W; 2250 m a.s.l.; 14 Nov. 2015; K. Ramírez

Figure 2. A. Laciniate lobules with ciliary bulbs of Bulbothrix ventricosa (KRR 231). B. Leprous thallus with soralia of Chrisothrix candelaris
(KRR 28). C. Filamentous thallus with orange apothecia of Coenogonium linkii (KRR 190). D. Podetia with single pink apothecia of Dibaeis
columbiana (KRR 62). E. Crenulate margin lobes and marginal soralia of Heterodermia albicans (KRR 295). F. Orbicularly growing lobes with
laminar cilia of Heterodermia comosa (KRR 243).
Roncallo leg.; KRR 92; CBUMAG:LIC:257.

Identification. Thallus dimorphic, with crustose primary thallus, composed of compact granules, light gray to pale beige; podetia covered with smaller granules; apothecia single, balloon-shaped, pink to pale pink (Gierl and Kalb 1993).

Ecology and distribution. *Dibaeis columbiana* was recorded in the departments of Boyacá, Cundinamarca, Meta, Quindío, and Tolima, in the páramos between 3000 and 3950 m a.s.l. (Sipman et al. 2000; Bernal et al. 2020). In the SNSM it was recorded in the Andean forest, at 2250 m a.s.l., expanding its altitudinal distribution range, on soil and rocks, in open and closed sites.

Heterodermia albicans (Pers.) Swinscow & Krog

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Bella Vista village, Villa Kelly coffee farm; 11°05.67′N, 074°04.87′W; 1550 m a.s.l., 28 Jun. 2017; K. Ramírez Roncallo leg.; KRR 252; CBUMAG:LIC:424 • Santa Marta, locality of Minca, Bella Vista village, Villa del Sol coffee farm; 11°05.9′N, 074°04.71′W; 1640 m a.s.l.; 29 Jun. 2017; K. Ramírez Roncallo leg.; KRR 326; CBUMAG:LIC:498; KRR 340; CBUMAG:LIC:512; KRR 367; CBUMAG:LIC:539.

Identification. Soralia, isidia, and phyllidia absent; margins are pseudocyphellate due to the breakage of small lobes. Apothecia with a crenulated margin; ascospores without sporoblastidia (*Pachyspora* type) (Díaz-Escandón 2017).

Ecology and distribution. *Heterodermia diademata* was recorded in the departments of Casanare, Cauca, Nariño, Risaralda, and Santander, on wood and live fences in the high Andean forest from 1200 to 2500 m a.s.l. (Díaz-Escandón 2017; Bernal et al. 2020). In SNSM, it was found in coffee crops in the sub-Andean forest, between 1550 and 1640 m a.s.l., on bark.

Heterodermia flabellata (Fée) D.D. Awasthi

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Bella Vista village, Villa Kelly coffee farm; 11°05.67′N, 074°04.87′W; 1550 m a.s.l., 28 Jun. 2017; K. Ramírez Roncallo leg.; KRR 250; CBUMAG:LIC:422.

Identification. Lower surface ecorticate, arachnoid and covered with an ochre pigment. Vegetative propagules absent (Díaz-Escandón 2017).

Ecology and distribution. *Heterodermia flabellata* was recorded in the departments of Antioquia, Boyacá, Caldas, Cauca, Cundinamarca, Risaralda, Santander and Valle del Cauca, in lowlands and Andean foothills, at between 500 and 2700 m a.s.l., on bark, rocks, and wooden fences (Wolf 1993; Simijaca Salcedo et al. 2001; Díaz-Escandón 2017; Bernal et al. 2020). In SNSM it was found on bark and wood in secondary forest and coffee crops in the sub-Andean forest between 890 and 1520 m a.s.l.

Heterodermia comosa (Eschw.) Follmann & Redón

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Bella Vista village, Villa Kelly coffee farm; 11°05.62′N, 074°04.84′W; 1510 m a.s.l.; 28 Jun. 2017; Kelly coffee farm; 11°05.61′N, 074°04.88′W; 1520 m a.s.l.; 28 Jun. 2017; K. Ramírez Roncallo leg.; KRR 311; CBUMAG:LIC:483.

Identification. Margin lobes wide, convergent, and crenulate; marginal soralia continuous (Díaz-Escandón 2017).

Ecology and distribution. *Heterodermia comosa* was recorded in the departments of Antioquia, Boyacá, Caldas, Cauca, Cundinamarca, Risaralda, Santander and Valle del Cauca, in lowlands and Andean foothills, at between 500 and 2700 m a.s.l., on bark, rocks, and wooden fences (Wolf 1993; Simijaca Salcedo et al. 2001; Díaz-Escandón 2017; Bernal et al. 2020). In SNSM it was found on bark and wood in secondary forest and coffee crops in the sub-Andean forest between 890 and 1520 m a.s.l.
Ecology and distribution. *Heterodermia galactophylla* was recorded in the departments of Antioquia, Boyacá, Caldas, Cauca, Cundinamarca, Huila, Nariño, Norte de Santander, Quindío, Risaralda, Santander, Tolima, and Valle del Cauca, on bark in Andean forests, paramo, subpáramos, at between 1000 and 3730 m a.s.l. (BGBM 2016; Díaz-Escandón 2017; Raz and Agudelo 2019; Bernal et al. 2020). In SNSM, it was found on bark in coffee crops in the sub-Andean forest, between 1520 and 1640 m a.s.l.

Heterodermia podocarpa (Bél.) D.D. Awasthi

Figure 3D

Identification. Terminal apothecia with lobed margins; soralia, isidia and phyllidia absent (Díaz-Escandón 2017).

Ecology and distribution. *Heterodermia podocarpa* was recorded in the departments of Antioquia, Boyacá, Cundinamarca, Cauca, Huila, Nariño, Norte de Santander, Putumayo, Quindío, Risaralda, Santander, Tolima, and Valle del Cauca, in Andean forests, páramos, and subpáramos, on bark, palms and wood in good condition from 1500 to 3000 m a.s.l. (Díaz-Escandón 2017; Bernal et al. 2020). In SNSM, it was recorded on bark in coffee crops in the sub-Andean forest at 1640 m a.s.l.

Heterodermia pseudospeciosa (Wulfen) Trevis.

Figure 4A, B

Materials examined. COLOMBIA • Magdalena: Santa Marta, locality of Minca, Bella Vista village, Villa del Sol coffee farm; 11°05.9′N, 074°04.75′W; 1600 m a.s.l.; 29 Jun. 2017; N. Cantillo et al. leg.; CIB2-5; CBUMAG:BRY:00963-5 • Santa Marta, locality of Minca, Bella Vista village Villa del Sol, coffee farm; 11°05.95′N, 074°04.75′W; 1600 m a.s.l.; 29 Jun. 2017; N. Cantillo et al. leg.; CIC1-7, CBUMAG:BRY:00965-7.

Identification. Terminal soralia labriform, capitate to subcapitate; lower surface cortical (Díaz-Escandón 2017).

Heterodermia speciosa (Wulfen) Trevis.

Figure 4C

Materials examined. COLOMBIA • Magdalena: Santa Marta, locality of Minca, Bella Vista village, Villa Kelly coffee farm; 11°05.67′N, 074°04.87′W; 1550 m a.s.l.; 28 Jun. 2017; K. Ramírez Roncallo leg.; KRR 225; CBUMAG:LIC:397.

Identification. Lobes with excavate or pseudocyphellate margins, forming non-convergent lateral soralia; presence of nordic acid in the medulla (K + red) (Díaz-Escandón 2017).

Ecology and distribution. *Heterodermia pseudospeciosa* has been recorded in the departments of Cauca, Cundinamarca, Risaralda, and Valle del Cauca, in lowlands, foothills of the Andean mountains, and Andean forests, from 900 to 2700 m a.s.l., on bark, rocks, and wooden fences (Díaz-Escandón 2017). In SNSM, it was found in coffee crops in the sub-Andean forest, at 1550 m a.s.l., on bark.

Leucodermia lutescens (Kurok.) Kalb

Figure 4D

Materials examined. COLOMBIA • Magdalena: Santa Marta, locality of Minca, Cerro Kennedy; 11°06.33′N, 074°03.42′W; 2520 m a.s.l.; 31 Jul. 2015, K. Ramírez Roncallo leg.; KRR 13; CBUMAG:LIC:178.

Identification. Marginal phyllidia or squamules present; margins rugged with white macules. These...
features, together with the presence of pruine, give the thallus a fragile and brittle appearance (Díaz-Escandón 2017).

Ecology and distribution. *Polyblastidium fragilissimum* has been recorded in the departments of Boyacá, Cauca, Norte de Santander, Tolima, and Valle del Cauca, in the foothills and Andean forests from 800 to 3000 m a.s.l., on bark and mosses (Díaz-Escandón 2017). In SNSM it was found in the Andean forest, at 2520 m a.s.l., on bark.

Polyblastidium japonicum (M. Satô) Kalb

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, El Campano village, 11°07′N, 074°05.91′W; 1190 m a.s.l., 21 Mar. 2015, A. Daza et al. leg.; SLO079-1; CBUMAG:LIC:109 • Santa Marta, locality of Minca, Bella Vista village, Villa Kelly coffee farm; 11°05.67′N, 074°04.87′W; 1550 m a.s.l.; 28 Jun. 2017; K. Ramírez Roncallo leg.; KRR 222; CBUMAG:LIC:394;
Identification. Soralia terminal, labriform, lower surface ecorticate, slightly arachnoid, white at the apex and dark towards the center; medulla with atranorin (K + yellow) (Mongkolsuk et al. 2015; Díaz-Escandón 2017).

Ecology and distribution. *Polyblastidium japonicum* has been recorded in the departments of Antioquia, Boyacá, Caldas, Casanare, Cauca, Cundinamarca, Huila, Nariño, Norte de Santander, Quindío, Risaralda, Santander, and Valle del Cauca, in the foothills and Andean forests from 800 to 3500 m a.s.l., on bark, live fences and wood in good condition (Díaz-Escandón 2017). In SNSM, it was found on decaying bark and wood in the sub-Andean and Andean forest, between 1190 and 1640 m a.s.l.

Polyblastidium neglectum (Lendemer, R.C. Harris & E.A. Tripp) Kalb

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Cerro Kennedy; 11°06.32′N, 074°03.31′W; 2560 m a.s.l.; 17 Aug. 2016; K. Ramírez Roncallo leg.; KRR 126; CBUMAG:LIC:298 • Santa Marta, locality of Minca, Bella Vista village, Villa del Sol coffee farm; 11°05.9′N, 074°04.71′W; 1640 m a.s.l.; 29 Jun. 2017; K. Ramírez Roncallo leg.; KRR 338; CBUMAG:LIC:499.

Identification. Branches flattened to weakly canalicate; soralia terminal, helmet-shaped (Gumboski 2016).

Ecology and distribution. *Ramalina cochlearis* has been recorded in the departments of Antioquia, Boyacá, Cauca, Cundinamarca, Huila, Quindío, Risaralda, Santander and Tolima, on bark in rain forests and moors from 1250 to 3130 m a.s.l. (García et al. 2018; Bernal et al. 2020). In SNSM, it was recorded in coffee crops in the sub-Andean forest, between 1510 and 1640 m a.s.l., on bark.

Stereocaulon meyeri Stein

Materials examined. COLOMBIA • Magdalena, Santa Marta, locality of Minca, Cerro Kennedy; 11°06.32′N, 074°03.31′W; 2560 m a.s.l.; 17 Aug. 2016; K. Ramírez Roncallo leg.; KRR 126; CBUMAG:LIC:298 • Santa Marta, locality of Minca, Bella Vista village, Villa del Sol coffee farm; 11°05.9′N, 074°04.71′W; 1640 m a.s.l.; 29 Jun. 2017; K. Ramírez Roncallo leg.; KRR 338; CBUMAG:LIC:510.

Identification. Soralia lateral and lower surface ecorticate, slightly arachnoid, with small ochre pigments towards the apices K + red (Díaz-Escandón 2017).
074°03.42'W; 2520 m a.s.l., 31 Jul. 2015; K. Ramirez Roncallo leg.; KRR 24; CBUMAG:LIC:189.

Identification. Pseudopodetia coralloid, highly branched at the apex; cylindrical phyllolodia covering the pseudopodetia, shorter towards the apex. Cephaldalia succulenta, soralia terminal, and ascoscarps black (Boekhout 1982; Sipman 2002; Rincón-Espitia and Mateus 2013).

Ecology and distribution. Stereocaulon meyeri was recorded in the departments of Boyacá, Caldas, Cundinamarca, Risaralda, Santander, and Tolima, on soil in páraramos from 3100 to 4300 m a.s.l. (Rincón-Espitia and Mateus 2013; Bernal et al. 2020). In SNSM, it was found on clay soil and rocks, in open sites, next to the road in the Andean forest at 2520 m a.s.l.; the new record expands this species’ altitudinal distribution range.

Discussion
Six genera and 19 species of lichens were recorded from Magdalena department and the SNSM for the first time, which brings the number of genera and species to 58 and 133, respectively, for this mountain region (Bernal et al. 2020). In addition, the altitudinal ranges of Dibaeis columbiae, Polyblastidium neglectum, and Stereocaulon meyeri are expanded.

Two species of Heterodermia were recorded in the SNSM: H. circinallis (Zahlbr.) W. A. Weber and H. leucemelos (L.) Poelt (Bernal et al. 2020). However, both were transferred to the genus Leucoderemia by Kalb (Mongkolsuk et al. 2015). Therefore, the Heterodermia species found in our study represent the first records of Heteroderemia for this mountain range.

We obtained new records of 19 species, although only a small part of the SNSM was explored. For this reason, the sampling area should be expanded to especially include sites that have not yet been explored to obtain more precise knowledge about the composition of lichens in this region (Rincón-Espitia et al. 2011, 2012; Lücking et al. 2019).

Acknowledgements
We are grateful to the Ministerio de Ciencia, Tecnología e Innovación (Minciencias) and the Vice-Rectory for Research at the Universidad del Magdalena for financial support, to the Grupo Colombiano de Liquenología (GCOL) for providing the specialized literature and confirming the identification of many species, and to the project “Functional diversity of corticolous lichens in disturbed forests of a tropical coastal mountain”.

This is the scientific contribution no. 15 from the Centro de Colecciones Biológicas de la Universidad del Magdalena (CBUMAG).

Authors’ Contributions
KRR – specimen collection and identification, writing and revision of the manuscript. HGR – identification of specimens and writing of the manuscript. MAN – specimen collection, writing, and revision of the manuscript.

References

Mägdefrau K, Winkler S (1967) Lepidostroma terricolens n.g. n.sp., eine Basidiolichene der Sierra Nevada de Santa Marta (Kolumbien). Mitteilungen aus dem Instituto Colombo-Alemán de Inves-
tigaciones Científicas Punta de Betín 1: 11–19.