New records and range expansion of *Calosoma sycophanta* (Linnaeus, 1758) (Coleoptera, Carabidae) in Western Siberia, Russia

Vitaly A. Stolbov\(^1\), Igor V. Kuzmin\(^1\), Dmitry E. Lomakin\(^1\), Sergei A. Ivanov\(^1\), Pavel S. Sitnikov\(^2\)

\(^1\) Tyumen State University, 6 Volodarskogo St., 625003 Tyumen, Russia. \(^2\) The Tyumen branch of the All-Russian Society for the Conservation of Nature, 33 Odesskaya St., 625000 Tyumen, Russia.

Corresponding author: Vitaly A. Stolbov, vitusstgu@mail.ru

Abstract

In this study, we report about 25 records of *Calosoma sycophanta* (Linnaeus, 1758) from Western Siberia collected in the last 21 years (1997–2017). We extend the known distribution of this species in the Tyumen, Kurgan, Omsk and Novosibirsk regions of Russia. New records extend the known distribution of *C. sycophanta* for 300 km to the north, and for 600 km to the east, in the Western Siberia. These new distributional data may contribute to a re-evaluation of its conservation status.

Key words

Biogeography; climate change.

Introduction

The forest caterpillar hunter, *Calosoma sycophanta* (Linnaeus, 1758) (Figs 1, 2), a member of the family Carabidae, is distributed in the Western Palearctic. The range of this species covers the whole of Europe, north-west Africa, Western and Central Asia (Kryzhanovsky 1981, Kryzhanovsky et al. 1995, Kryzhanovsky and Obydov 2001, Bespalov et al. 2010).

This entomophagus predator has been introduced in North America for forest pest control, where it has successfully established and is now expanding its range (Evans 2009). In some countries it is reproducing very successful (Kanat and Mol 2008). Despite this, in many countries and regions (e.g. Czech Republic, Poland, Germany, Russia, Ukraine and Azerbaijan), populations of this beetle are small and continue to decline, and in these counties, this species is protected. Due to its large size, bright color, practical significance, and conservation value, this species of beetle is well-known.

The north-eastern border of the Asian part of the area is currently not well-known (Bespalov et al. 2010). By the 1990s, *C. sycophanta* was located along the southern Ural Mountains and in western Kazakhstan (Kryzhanovsky 1981, 1983), where it is still relatively common (Yashchenko and Mityaev 2005, E.V. Zinoviev 2018 pers. comm.). The northernmost specimens were found in the central Ural Mountains (Sverdlovsk oblast) between 1989 and 1996 in the vicinity of the cities of Asbest, Yekaterinburg, Belorechensk (Fig. 3) (Voronin 1999). The easternmost specimens were found in the southwest of Western Siberia in the Trans-Ural regions (Kurgan oblast) (Kalinin 1985, Molchanov 1989, Utkin 1999,
Utkin and Balahonova 2012). The south-eastern border of the area is formed by the mountains of Central Asia. In the east, the distribution of *C. sycophanta* is limited to northeastern Kazakhstan, northwestern Mongolia, and a southwestern Altai within Russia (Jacobson 1905–1915, Breuning 1927, Kryzhanovsky 1981, 1983, Kryzhanovsky and Obydov, 2001, Bespalov et al. 2010). The latest records of *C. sycophanta* in Altai Krai (Zmeynogorsky district) were found in 1990 and 2001 (Obydov 2010) (Fig. 3). *Calosoma sycophanta* was not found in the dry steppes and deserts of central Kazakhstan. Thus, in the Asian part of its range, this species area occurs in 2 areas – a northern area, running through the southern Ural Mountains and Western Siberia, and a southern area, which includes the mountainous regions of Central Asia, Altai, and northwestern Mongolia (Fig. 3, inset).

However, since the late 1990s there has been a large number of new records of this species in the territory of Western Siberia, including some from a considerable distance from its previously known range. These records were partially published in various local and regional natural history journals. An annotated list of all records, both new and previously published, and a discussion of possible reasons for the increase in the number and expansion of the area of *C. sycophanta* in the Asian part of Russia is given below.

Methods

We studied the collections of the Zoological Museum of Tyumen State University (Tyumen), the Museum Complex of Slovtoy (Tyumen), the Siberian Zoological Museum (Novosibirsk), private collections of M.A. Ananin and A.V. Litvinov (both amateur entomologists), and photographs and observations by local residents and naturalists. All literature was critically examined. The originals of rare and difficult-to-find publications were especially searched for.

Of the new material that we collected, most of the specimens were collected by hand. In some cases, beetles were caught in soil traps and cages with gypsy moth larvae. For some, only typical fragments of sclerotised elytra were found.

Results

Records. All records of *Calosoma sycophanta* in Western Siberia from the last 21 years (1997–2017) are listed in chronological order in Table 1. Many of the records were previously published, but mostly in local natural history journals and often with incomplete data. Other records are new, published here for the first time. Figure 3 maps these records; numbers correspond to records in Table 1.

Identification. Body length is 21–33 mm. Head and pronotum dark blue or blue-green. Elytra golden-green with copper-red tint, sometimes copper-red. Antennae and legs black. Wings are developed, capable of flying. The color of this species differs from other species *Calosoma* in Eurasia.
Table 1. Summary of the records of *Calosoma sycophanta* (L., 1758) in Western Siberia, Russia, 1997–2017. Datum for geographic coordinates: WGS84.

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude (m)</th>
<th>Observation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 Jun. 1997</td>
<td>Kurgan Oblast, Polovinsky District, Sumki Village</td>
<td>55°03'N</td>
<td>065°44'E</td>
<td>155</td>
<td>1 male, N. Selutina coll.</td>
<td>Siberian Zoological Museum (Novosibirsk), Bespalov et al. 2010</td>
</tr>
<tr>
<td>6</td>
<td>July 2000</td>
<td>Tyumen Obl., Tyumensky Distr., Bogandinsky Settlement</td>
<td>56°52'N</td>
<td>065°50'E</td>
<td>73</td>
<td>Forest edge, 2 imago, A.V. Litvinov coll.</td>
<td>A.V. Litvinov private collection, new record</td>
</tr>
<tr>
<td>7</td>
<td>12 Jul. 2001</td>
<td>Tyumen Obl., Ishim City</td>
<td>56°06'N</td>
<td>069°28'E</td>
<td>84</td>
<td>City park, 1 imago, Anonymous coll.</td>
<td>Moscow Biological Museum, Obydov 2010</td>
</tr>
<tr>
<td>10</td>
<td>08 Jul. 2006</td>
<td>Tyumen Obl., Onutinsky Distr., 200 m W Zhuravlevskoye Vill.</td>
<td>56°16'N</td>
<td>067°40'E</td>
<td>129</td>
<td>Birch forest, 1 female, A.I. Levchenko photos</td>
<td>Siberian Zoological Museum (Novosibirsk), Bespalov et al. 2010</td>
</tr>
<tr>
<td>11</td>
<td>Summer 2007</td>
<td>Tyumen Obl., Golyshmanovsky Distr., Razhevo Vill.</td>
<td>56°09'N</td>
<td>068°23'E</td>
<td>113</td>
<td>Small birch forest in a field (kolok), 1 imago, D.V. Kalinin photo</td>
<td>Knyazev 2015</td>
</tr>
<tr>
<td>12</td>
<td>05 Jul. 2009</td>
<td>Omsk Obl., Gorkovsky Distr, 3 km NE Alekseyevskiy Settl.</td>
<td>55°33'N</td>
<td>074°06'E</td>
<td>114</td>
<td>Aspen forest, 1 imago, S.A. Knyazev Coll.</td>
<td>Siberian Zoological Museum (Novosibirsk), Bespalov et al. 2010</td>
</tr>
<tr>
<td>13</td>
<td>20 Jun. 2010</td>
<td>Novosibirsk Obl., Karasuksky Distr., 20 km SW Karasuk City</td>
<td>53°36'N</td>
<td>077°50'E</td>
<td>107</td>
<td>Small birch forest in a field (kolok), in the cage with caterpillars Lymaentria dispar, 1 male, V.V. Martemyanov coll.</td>
<td>Knyazev 2015</td>
</tr>
<tr>
<td>15</td>
<td>20 Jun. 2012</td>
<td>Tyumen Obl., Kazansky Distr., 1500 m N Gagarin Vill.</td>
<td>55°45'N</td>
<td>069°16'E</td>
<td>76</td>
<td>Small wet birch forest with common reed in a field (kolok), 1 imago, I. Kaempf, W. Mathar, S.S. Tupitzin photos</td>
<td>W. Mathar and S.S. Tupitzin pers. comm. 2016, new record</td>
</tr>
<tr>
<td>16</td>
<td>23 Jun. 2014</td>
<td>Omsk Obl., Cherlaksky Distr, 2 km NE Berdinkovo Vill.</td>
<td>54°26'N</td>
<td>074°28'E</td>
<td>111</td>
<td>Cottonwood field windbreaks, badly damaged by caterpillars L. dispar, 1 imago, S.A. Knyazev coll.</td>
<td>E.S. Afonin pers. comm. 2017, new record</td>
</tr>
<tr>
<td>19</td>
<td>20 Jun. 2015</td>
<td>Tyumen Obl., Uporovsky Distr., 1300 m E Masali Vill.</td>
<td>56°04'N</td>
<td>066°35'E</td>
<td>132</td>
<td>Dry birch forest, 2 imago (incl. 1 male), N.V. Khozyainova Coll. and E.S. Bayanov photos</td>
<td>Zoological Museum of Tyumen State University, Bayanov and Khozyainova 2015</td>
</tr>
<tr>
<td>20</td>
<td>29 Jun. 2015</td>
<td>Tyumen Obl., Omutinsky Distr., Sitnikovo Vill.</td>
<td>56°21'N</td>
<td>067°50'E</td>
<td>109</td>
<td>In the courtyard of a rural school, 1 female, S.A. Semyonova photo</td>
<td>E.S. Bayanov and A.I. pers. comm. 2015, new record</td>
</tr>
<tr>
<td>21</td>
<td>1 Jul. 2015</td>
<td>Tyumen Obl., Uporovsky Distr., 4.5 km NW Berdyugino Vill.</td>
<td>56°11'N</td>
<td>066°23'E</td>
<td>129</td>
<td>Birch forest, 1 larva, V.A. Sannikov photo</td>
<td>I.E. Niznik and V.A. Sannikov pers. comm. 2018, new record</td>
</tr>
</tbody>
</table>
Discussion

Table 1 shows that *Calosoma sycophanta* significantly has expanded the northeastern edge of its range since the late 1990s (Fig. 3). Previously in the Asian part of Russia only a few records existed in the very south-west of that region and 1 record in the Altai. However, over the last 20 years, 24 new records were made in the plains and an another record for the Altai mountains. In addition, records of this species are becoming more northern, penetrating into the boreal zone. There is also an expansion of the range to the east. Early records of *C. sycophanta* were noted for Kurgan and Tyumen oblasts but since 2009, it has been recorded in the Omsk oblast, and since 2010, in eastern Novosibirsk oblast. The edge of the range has expanded 300 km to the north and 600 km to the east. It is probable that soon beetles from the 2 population areas (Eastern European-Trans Ural Mountains populations and Altai) will meet and the range of this species will become connected.

In some of the new locations, the number of individuals of *C. sycophanta* was very high. According M.E. Yurin, to a forest ranger of the Omutinsky Forest District of Tyumen region, in recent years this species occurs very often in the forests of that district (E.S. Bayanov 2016 pers. comm.). This species is now also common in the Kurgan oblast (Balahonova 2009), but no specific occurrence data were given.

The expansion of the range of *C. sycophanta* area has been noted in other regions as well. In North America, where the species was introduced in 1906 and 1907 to control the gypsy moth, its area continues to expand (Schaefer et al. 1999, Evans 2009). In eastern Kazakhstan (in the eastern part of the range) in recent years, several new records of this species have been noted (Bespakov et al. 2010).

As a reason for the increased number of records and the expansion of the range of *C. sycophanta*, we assume that global climate change is responsible. Earlier, since the edge of the 20th century and beginning of the 21st century, both in Europe and in Western Siberia, many steppe arthropod species, such as *Argiope bruennichi* (Scopoli, 1772), *Mantis religiosa* (Linnaeus, 1758), and *Phaneroptera falcata* Poda, 1761, have expanded their ranges to the north (Liana 2007, Bolshakov et al.

Table 1. Continued.

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude (m)</th>
<th>Observation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>6-10 Jul. 2017</td>
<td>Tyumen Obl., Nizhnetavdinsky Dist., Lake Kuchak - Tyumen State University field station for training</td>
<td>57°20’N</td>
<td>66°04’E</td>
<td>58</td>
<td>Along the road, on as-pens badly damaged by L. dispar, into a soil trap, 1 female and 1 male, V.A. Stolbov Coll.</td>
<td>Zoological Museum of Tyumen State University, new record</td>
</tr>
</tbody>
</table>

Figure 3. Dynamics of the distribution of *Calosoma sycophanta* (Linnaeus, 1758) in Western Siberia. Numbers correspond to the records in Table 1. Top right: the area in Palearctic (dark fill) (Krizhanovskii 1983).
2010, Stolbov et al. 2016), as a result, it is thought, of aridization brought about by climate change. These range expansions look similar to what is now happening with Calosoma sycophanta. The northward expansion of a number of steppe ground beetles, including species of the genus Calosoma, has been noted in recent years in Belarus (Aleksandrovicz 2011), and the increase in the average annual temperature due to global climate change and human economic activity were noted as the main causes.

Calosoma sycophanta is an active predator, an ento-
mophagus, feeding mainly on the larvae of 2 serious
forest pests, the Gypsy Moth Lymantria dispar (Linnaeus, 1758) and the Nun Moth L. monacha (Linnaeus, 1758). Kryzhanovsky and Obydov (2001) found that population numbers of Calosoma are fluctuate highly depending on
the number of Gypsy Moths. Since the end of the 20th
century there has been an increase in the population
numbers and ranges of both the gypsy Moth and Nun Moth in Russia, but primarily in Siberia, where they previously
were not widespread (Gninenco 2000, Titkina et al. 2013,
Yasyukevich et al. 2013).

Most of new records of C. sycophanta have been
made in places of mass outbreaks of moths, at least in the
most northerly locations. Thus, in the Kazansky district
(record no. 18), a very high abundance of imagines and
larvae of C. sycophanta was noted (A.S. Afonin pers.
comm. 2016). On repeated visits to the same locality on
July 20, 2016 and July 31, 2017, Gypsy Moth numbers
were very low, and C. sycophanta was not found. The
records of C. sycophanta made in 2017 from the vicinity
of the Lake Kuchak biostation of Tyumen State Uni-
versity (Nizhnetavdinsky district of Tyumen oblast) are
significant in this regard. Since regular entomological
monitoring in this area began in 1993 and until 2016, C.
sycophanta had not been found. In 2016 a large Gypsy
Moth outbreak occurred in this region, which in 2017
caused a mass deformation of the leaves of aspen and
birch. In that year, during the outbreak, a male and a
female of C. sycophanta were found. Unlike most other
large ground beetles, C. sycophanta flies well (Kryzha-
novsky 1983, Kniazev 2015). This allows this species to
quickly follow its main prey object. Thus, we conclude
that significant increases in the abundance of C. sycoph-
anta and the expansion of its range to the north and
east in Western Siberia is indirectly caused by global
climate change, because of the expansion of the range of
its main prey, the Gypsy Moth.

Acknowledgements

We thank A.S. Afonin, M.S. Ananin, E.S. Bayanov, D.V.
Kalinin, S.Yu. Kniazev, K. Kurochkina, A.I. Levchenko,
Dr A.Yu. Levykh, A.V. Litvinov, Dr I.I. Lyubechanskiy,
Dr K.V. Makarov, Dr W. Mathar, I.E. Niznik, V.A. San-
nikov, S.A. Semyonova, Dr S.S. Tupitzin and Dr E.V.
Zinovyev for kindly shared collection specimens, photos-
graphs, and data on C. sycophanta.

Authors’ Contributions

VAS, IVK conceived the manuscript, collected data, and
wrote and revised the manuscript; DL and PS, collected
data and revised the manuscript; SI analyzed the geo-
draphical data and prepared the map.

References

Aleksandrovicz O. 2011. Recent records of steppe species in Belarus,
first indications of a steppe species invasion? ZooKeys 100: 475–
485. https://doi.org/10.3897/zookeys.100.1541
Balahanova VA (2009) The faunistic review of insects of the southern
Pritobolie. Bulletin of the Kurgan State Uaniversity, Series “Natu-
ral Sciences” 2: 17–20. [in Russian]
Bayanov ES, Khozyainova NV (2015) New habitats of rare plant and
animal species in the Uporovsky district of the Tyumen region
[Novyye mestonakhozhdeniya redkih vidov rasteni i zhivot-
nykh v Uporovskom rayone Tyumenskoy oblasti]. XIII Zyrayan
Readings: Proceedings of the All-Russian Scientific and Practical
Conference, Kurgan, 227-228. [in Russian]
Bespalov AN, Dudko RYu, Lyubechanski II (2010) Additions to the
ground beetle fauna (Coleoptera, Carabidae) of the Novosibirsk
Oblast: do the southern species spread to the north? Euroasian
Bolshakov LV, Sheherbakov EO, Mazurov SG, Alekseev SK, Ryabov
SA, Ruchin AB (2010) Northernmost records of Praying Mantis
Mantis religiosa (Linnaeus, 1755) (Mantodea: Mantidae) in Euro-
Breuning S (1927) Monographie der Gattung Calosoma Web. (Carab.),
Evans AV (2009) The forest caterpillar hunter, Calosoma sycophanta,
an Old World species confirmed as part of the Virginia beetle fauna
Gashev SN, Sinitkov PS, Khozyainova NV (2002) Activation of
regional zoobotanical studies in the course of work on the Red
Book of the Tyumen region [Aktivizatsiya regional’nykh zoobo-
tanicheskikh isledovaniy v khode rabot nad Krasnoy knigoi
Tyumenskoy oblasti]. Issues of practical ecology: Materials of the
All-Russian Scientific and Practical Conference, Penza, 38–42. [in
Russian]
Gninenco YuI (2000) Some ecological changes in Siberian forests: out-
breaks of new species. Problems of regional ecology [Nekotoryye
ekologicheskije izmeneniya v lesakh Sibiri: vypuskchi chelensh-
sovykh vidov]. Materials of the All-Russian Conference, Kras-
noyarsk, 174–175. [in Russian]
Jacobson GG (1905 – 1915) Beetles of Russia and Western Europe
[Zhuki Rossii i Zapadnoy Evropy]. Releases I–XI. The publication
of AF Devrien, St. Petersburg, 1024 pp. [in Russian]
Kalinin SS (1985) Terrestrial invertebrates in the feeding of waterfowl
and waterbirds of Transuras [Nazenmmye bespozvonochnyye v
pitani vodoplavayushchikh i okolovodnykh ptits Zaural’ya]. In:
Invertebrate fauna of the Urals, Chelyabinsk, 39–59. [in Russian]
optera: Carabidae) feeding on the pine processionary moth, Tha-
mutopoea pityocampa (Denis & Schiffermüller) (Lepidoptera:
Thaumetopoidea), in the laboratory. Turkish Journal of Zoology
Kniazev SA (2015) Forest Caterpillar Hunter Calosoma sycophanta
[Krasotel pakhuchiy Calosoma sycophanta]. The Red Data Book of
the Omsk Region, Omsk, 63–64. [in Russian]
Nauka, Leningrad, 20. [in Russian]
Nauka, Leningrad, 20. [in Russian]
Kryzhanovskiy OL (1983) Beetles of suborder Adephaga: family Rhysididae, Trachypachidae; family Carabidae (introduction and
overview of the fauna of the USSR) [Zhuki podotryada Adephaga:
Zhuki podotryada Adephaga:
Titkina SN, Popov IO, Semenov SM, Yasukevich VV (2013) Changes in distribution in Russia and neighboring countries of gipsy moth and nun moth (Lymantria dispar L. and Lymantria monacha L.). Lymantriidae, Lepidoptera) due to observed climate change and projected ones for XXI century [Izmeneniye rasprostraneniya v Rossii i sosediakh stranakh neparnogo shelkopryada i Shelkopry ada-monashenki (Lymantria dispar L. i Lymantria monacha L., Lymantriidae, Lepidoptera) pod vliyaniem naklyuchayemyh i ozhidayemyh v XXI veke izmeneniya klimata]. The problems of ecological monitoring and modeling of ecosystems 25: 375–394. [in Russian]