Ichthyofauna from three streams of the lower Iguatemi River in the upper Paraná river basin, Brazil

Valéria Flávia Batista-Silva,1, 2 Augusto Frota,3 Elaine Antoniassi Luiz Kashiwaqui,1, 2 Milza Celi Fedatto Abelha,1, 2 Dayani Bailly,2, 4 Éder André Gubiani,5 Weferson Júnio da Graça3, 6

1 Universidade Estadual de Mato Grosso do Sul, BR 163, km 20,2, CEP 79980-000 Mundo Novo, MS, Brazil. 2 Grupo de Estudos em Ciências Ambientais e Educação (GEAMBE), BR 163, km 20,2, CEP 79980-000 Mundo Novo, MS, Brazil. 3 Universidade Estadual de Maringá, Coleção Ictiológica do Núcleo de Pesquisas em Limnologia, Ictiología e Aquicultura, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Av. Colombo, 5790, CEP 87020-900 Maringá, PR, Brazil. 4 Universidade Estadual de Maringá, PNPD/CAPES, PEA/NUPELIA, Av. Colombo, 5790, CEP 87020-900 Maringá, PR, Brasil. 5 Universidade Estadual do Oeste do Paraná, Curso de Engenharia de Pesca, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca, Grupo de Pesquisas em Recursos Pesqueiros e Limnologia, Rua da Faculdade, 645, CEP 85903-000 Toledo, PR, Brazil. 6 Universidade Estadual de Maringá, Centro de Ciências Biológicas, Departamento de Biologia, Av. Colombo, 5790, CEP 87020-900 Maringá, PR, Brazil.

Corresponding author: Valéria Flávia Batista-Silva, vfb_silva@uems.br

Abstract

The ichthyofauna from 3 streams (Água Boa, Perobão, and Santa Maria) to the lower Iguatemi River were inventoried, which is located in the upper Paraná river basin, in Mato Grosso do Sul state, Brazil. Sites in the upper, intermediate, and lower portions of each stream were quarterly electrofished from March to December 2008. All sampled fish (n = 6,816 individuals) represented 43 species of 5 orders, and 16 families. The most abundant species was Phalloceros harpagos (63.5%), followed by Astyanax aff. paranae (10.6%), Hypostomus ancistroides (5.9%), Gymnotus inaequilabiatius (3.4%), and Knodus moenkhausii (2.7%). Despite the high ichthyofauna richness in the lower portion of Iguatemi River, the need to implement and/or expand soil conservation practices and riparian forest restoration is of utmost importance to maintain these populations in the long term.

Keywords

Diversity; floodplain; freshwater fishes; preservation; re-establish.

Introduction

The South American freshwater fish fauna is the most diverse on earth (Albert et al. 2011), with about 20 orders, 69 families, 739 genera, and 5,160 valid species (Reis et al. 2016). Of these, approximately 310 species, including both native and non-native species, are found in the upper Paraná river basin (Langeani et al. 2007). Small tributaries and streams of this basin harbor a great concentration of small-bodied species of fish (Castro 1999, Winemiller et al. 2008), with little or no commercial value, which correspond to around 50% of the richness of freshwater fish species in tropical regions (Lowe-McConnell 1999, Winemiller et al. 2008).

Despite the representativeness of Brazilian streams fish fauna in Neotropical biodiversity and its contribu-
ation to the functioning of ecosystems, the composition of fish species in Brazilian streams is still poorly reported in the literature (Castro et al. 2003, Langeani et al. 2007, Winemiller et al. 2008). Although relatively well known compared to elsewhere in South America, the ichthyofauna of the upper Paraná river basin also requires further investigations (Langeani et al. 2007). Such a lack of information on the species composition of fish assemblages is particularly pronounced at the lower portion of the Iguatemi River, a right bank tributary of the upper Paraná river basin (see Súarez and Petrere-Júnior 2003, 2005, 2006).

The Iguatemi River, mainly in its lower section, is located within the limits of the area of influence of flood pulses of the upper Paraná River floodplain. This area corresponds to an extensive floodplain, mainly in the Mato Grosso do Sul state, and represents a very dynamic ecosystem in biotic and abiotic terms (Agostinho et al. 2009), presenting a high environmental heterogeneity and importance for biodiversity maintenance (Thomaz et al. 2007). Since the knowledge on fish species living in a river basin is essential for any measure of management of fishery resources and/or water quality and habitats (Oliveira et al. 2014), we present a list of fish species for 3 first-order streams, tributaries to the Iguatemi River, within the limits of the upper Paraná River floodplain.

Methods

Study area. Água Boa, Perobão, and Santa Maria are first-order streams, which run for about 6.0, 4.3, and 5.3 km, respectively, in rural areas in southern Mato Grosso do Sul, Brazil. Only the headwater of the Santa Maria stream is located in the urban area of the municipality of Mundo Novo. All the 3 streams flow into the right bank of the Iguatemi River, upper Paraná river basin (Fig. 1). These streams are surrounded by poor arboreal riparian forest. The native vegetation is the Atlantic Forest biome (semi-deciduous forest), which has been largely replaced with agriculture and pasture. Deforestation is a remarkable characteristic of the history of regional occupation (Súarez and Petrere-Júnior 2003). Siltation is another anthropogenic stressor. The soil in the region is sandy and frequently impacted by gullies, intensifying the input of sediments into the streams; added to this, rural populations indiscriminately use the water from streams for livestock, which worsens the siltation process due to animal trampling (Mendonça et al. 2014). Garbage accumulation is another impact on the Santa Maria stream given its contact to urban areas.

Data collection. Samplings were conducted quarterly from March to November, 2008 (Brazilian license 146/2007, IBAMA/SISBIO) in the upper (Site 1), intermediate (Site 2) and lower (Site 3) portions of Água Boa, Perobão, and Santa Maria streams. Each sampling site shows distinct characteristics of width, depth, flow, streambed, and riparian vegetation (for more details, see Table 1). Fish were caught using electrofishing (portable generator TOYAMA 1600, 220V, DC). The sampling effort was standardized for each stream and the different months. Each sampled portion length was determined according to Fitzpatrick et al. (1998), wherein we took 5 width measurements in each portion (emphasizing the environmental heterogeneity including the regions of run, riffle, and pool). Later, we calculated the arithmetic mean of these measures and multiplied the result by 20. The length of the upper, intermediate, and lower portion sampled were 82 m, 71 m, and 50 m for the Água Boa stream, 94 m, 57 m, and 61 m for the Perobão stream, and
Blocking nets were installed at the end of each portion (10 m × 2 m and mesh size of 0.5 cm between opposite nodes) to prevent fish from escaping. A single electrofishing pass was used to collect the fish in each portion. The specimens were euthanized in benzocaine and fixed in 10% formalin. In the laboratory, specimens were sorted and placed in glass vials containing 70% alcohol. Identification followed Graça and Pavanelli (2007) and/or via specialist verification. Taxonomic classification followed Reis et al. (2003), Betancur et al. (2017), and Ferraris (2007) particularly for Siluriformes. Voucher specimens were deposited in the fish collection of the Nupélia (NUP: Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura), Universidade Estadual de Maringá, Maringá, Paraná (NUP 16119 to NUP 16122, NUP 16138 to NUP 16148, NUP 16151 to NUP 16185, and NUP 16170).

Results

The number of fish caught (n = 6,816 individuals) represented 43 species, in 5 orders, and 16 families (Table 2). The species were categorized by their constancy of occurrence, which was calculated for each stream according to Dajoz (1983). Species with a frequency of occurrence up to 25% were classified as occasional, between 25 and 50% as an accessory, and above 50% as constant. In addition, the species were categorized into autochthonous and allochthonous, respectively to distinguish native and introduced species to the upper Paraná river basin (Graça and Pavanelli, 2007, Langenhielm et al. 2007, Julio Junior et al. 2009).

Table 1. Environmental features and sampled area at Água Boa, Perobão and Santa Maria streams. Site 1 = upper portion; Site 2 = intermediate portion; Site 3 = lower portion. Minimums and maximums are shown for width and depth.

<table>
<thead>
<tr>
<th>Stream</th>
<th>Site</th>
<th>Latitude (S)</th>
<th>Longitude (W)</th>
<th>Width (m)</th>
<th>Depth (cm)</th>
<th>Flow conditions</th>
<th>Stream bed</th>
<th>Riparian vegetation</th>
<th>Principal impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Água Boa</td>
<td>1</td>
<td>23°52'42.24"</td>
<td>054°21'55.37"</td>
<td>2.0–6.0</td>
<td>12–15</td>
<td>Backwaters</td>
<td>Clayey; abundant aquatic grasses</td>
<td>Marginal veg.: scattered trees, shrubs & grasses</td>
<td>Deforestation; grazing</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23°50'16.65"</td>
<td>054°20'55.54"</td>
<td>2.2–5.5</td>
<td>30–90</td>
<td>Backwaters alternating with rapids & pools</td>
<td>Rocky & sandy</td>
<td>Marginal veg.: small clusters of trees & pasture grasses</td>
<td>Recreational activities</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23°50'03.33"</td>
<td>054°20'58.53"</td>
<td>2.2–2.7</td>
<td>30–63</td>
<td>Rapid water flow</td>
<td>Sandy</td>
<td>Marginal veg.: scattered trees, shrubs & grasses</td>
<td>Grazing; fish farming (natural course altered)</td>
</tr>
<tr>
<td>Perobão</td>
<td>1</td>
<td>23°49'25.26"</td>
<td>054°26'43.30"</td>
<td>2.0–10.0</td>
<td>5–15</td>
<td>Backwaters</td>
<td>Clayey, slightly steep banks</td>
<td>Marginal veg.: mainly pasture grasses</td>
<td>Intense transit of cattle</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23°48'59.35"</td>
<td>054°26'40.06"</td>
<td>1.0–4.5</td>
<td>10–50</td>
<td>Pools & rapids, rapids prevailing</td>
<td>Predominantly rocky & sandy; steep banks</td>
<td>Narrow band of riparian veg. & pasture grasses</td>
<td>Deforestation; grazing</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23°48'05.50"</td>
<td>054°26'26.00"</td>
<td>2.0–3.6</td>
<td>26–45</td>
<td>Alternating backwaters, rapids & pools</td>
<td>Rocky & sandy; slightly sinuous, with steep bank & limited downstream by a waterfall (about 3 m)</td>
<td>Scarce marginal veg.: scattered trees & pasture grasses</td>
<td>Deforestation; grazing</td>
</tr>
<tr>
<td>Santa Maria</td>
<td>1</td>
<td>23°52'22.75"</td>
<td>054°17'49.54"</td>
<td>0.7–1.2</td>
<td>12–19</td>
<td>Straight channel that receives culvert flow</td>
<td>Clayey; steep banks</td>
<td>Marginal veg.: scattered trees, shrubs & grasses</td>
<td>Deforestation; grazing</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23°54'29.17"</td>
<td>054°17'14.49"</td>
<td>0.9–3.0</td>
<td>20–50</td>
<td>Straight channel next to fish farming; low flow</td>
<td>Clayey bed; somewhat steep banks</td>
<td>Marginal veg.: grasses & some shrubs</td>
<td>Deforestation; grazing</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23°53'52.44"</td>
<td>054°16'33.55"</td>
<td>1.6–4.6</td>
<td>15–80</td>
<td>Straight channel that receives culvert flow</td>
<td>Rocky & sandy</td>
<td>Marginal veg.: grasses</td>
<td>Deforestation; grazing</td>
</tr>
<tr>
<td>Species</td>
<td>Constancy</td>
<td>Origin</td>
<td>Voucher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characiformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anostomidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leporinus friderici (Bloch, 1794)</td>
<td>02</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphyocharax anisitsi Eigenmann & Kennedy, 1903</td>
<td>03</td>
<td>OC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP16143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphyocharax dentatus Eigenmann & Kennedy, 1903</td>
<td>02</td>
<td>OC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP16145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astyanax aff. fasciatus (Cuvier, 1819)</td>
<td>01</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astyanax aff. paranae Eigenmann, 1914</td>
<td>722</td>
<td>AC</td>
<td>CO</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astyanax lacustris (Lütken, 1875)</td>
<td>135</td>
<td>CO</td>
<td>—</td>
<td>AC</td>
<td>Auto</td>
<td>NUP16175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piabarchus stramineus (Eigenmann, 1908)</td>
<td>108</td>
<td>AC</td>
<td>—</td>
<td>CO</td>
<td>Auto</td>
<td>NUP16148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knodus moenkhausii (Eigenmann & Kennedy, 1903)</td>
<td>31</td>
<td>AC</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosarcus pintoi Campos, 1945</td>
<td>03</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Allo</td>
<td>NUP16156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piabina argentea Reinhardt, 1867</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serrapinnus notomelas (Eigenmann, 1915)</td>
<td>107</td>
<td>AC</td>
<td>—</td>
<td>AC</td>
<td>Auto</td>
<td>NUP16177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenuchidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characidium gomesi Travassos, 1956</td>
<td>01</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characidium aff. zebra Eigenmann, 1909</td>
<td>14</td>
<td>AC</td>
<td>OC</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curimatidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyphocharax modestus (Fernández-Yépez, 1948)</td>
<td>02</td>
<td>OC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP16142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steindachnerina brevipinna (Eigenmann & Eigenmann, 1889)</td>
<td>04</td>
<td>OC</td>
<td>—</td>
<td>OC</td>
<td>Allo</td>
<td>NUP16155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrinidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoplerythrinus unitaeniatus (Agassiz, 1829)</td>
<td>01</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoplias sp. 3</td>
<td>12</td>
<td>OC</td>
<td>AC</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebiasinidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pymhulina australis Eigenmann & Kennedy, 1903</td>
<td>44</td>
<td>AC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP16147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parodontidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apareiodon affinis (Steindacher, 1879)</td>
<td>03</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parodon nasus Kner, 1859</td>
<td>02</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprinodontiformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poeciliidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalloceros harpagos Lucinda, 2008</td>
<td>4329</td>
<td>AC</td>
<td>CO</td>
<td>AC</td>
<td>Auto</td>
<td>NUP16120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotiformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotus inaequiliabatus (Valenciennes, 1839)</td>
<td>232</td>
<td>CO</td>
<td>—</td>
<td>AC</td>
<td>Allo</td>
<td>NUP16157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotus pantanal Fernandes, Albert, Daniel-Silva, Lopes, Crampton & Almeida-Toledo, 2005</td>
<td>07</td>
<td>—</td>
<td>—</td>
<td>AC</td>
<td>Auto</td>
<td>NUP16162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypopomidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachyhypopomus aff. gauderio Giora & Malabarba, 2009</td>
<td>01</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Allo</td>
<td>NUP16163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sternopygidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenmannia guairaca Peixoto, Dutra & Wosiacki, 2015</td>
<td>03</td>
<td>AC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP16151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cichliformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cichlidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cichlasoma paranaense Kulander, 1983</td>
<td>50</td>
<td>OC</td>
<td>CO</td>
<td>—</td>
<td>Auto</td>
<td>NUP16222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenicichla britskii Kulander, 1982</td>
<td>23</td>
<td>CO</td>
<td>—</td>
<td>CO</td>
<td>Auto</td>
<td>NUP16221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siluriformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auchenipteridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachelyopterus galeatus (Linnaeus, 1766)</td>
<td>06</td>
<td>OC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP1885</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callichthyidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callichthys callichthys (Linnaeus, 1758)</td>
<td>16</td>
<td>AC</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corydoras aeneus (Gill, 1858)</td>
<td>71</td>
<td>AC</td>
<td>OC</td>
<td>CO</td>
<td>Auto</td>
<td>NUP16185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoplosternum littorale (Hancock, 1828)</td>
<td>04</td>
<td>—</td>
<td>—</td>
<td>OC</td>
<td>Auto</td>
<td>NUP16158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptapteridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imparfinis schubarti (Gomes, 1956)</td>
<td>104</td>
<td>OC</td>
<td>AC</td>
<td>CO</td>
<td>Auto</td>
<td>NUP16168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimelodella avanhandavae Eigenmann, 1917</td>
<td>04</td>
<td>OC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP16139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimelodella gracilis (Valenciennes, 1835)</td>
<td>02</td>
<td>OC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP1874</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamdia quelen (Quoy & Gaimard, 1824)</td>
<td>36</td>
<td>AC</td>
<td>AC</td>
<td>CO</td>
<td>Auto</td>
<td>NUP16159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loricariidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farlowella hahni Meinken, 1937</td>
<td>15</td>
<td>AC</td>
<td>—</td>
<td>—</td>
<td>Auto</td>
<td>NUP16140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and Heptapteridae (4 species) presented higher richness, contributing together with 51.2% of all species (Fig. 3). *Phalloceros harpagos* Lucinda, 2008 (4,329 individuals), *Astyanax aff. paranae* Eigenmann, 1914 (722 individuals), *Hypostomus ancistroides* (Ihering, 1911) (400 individuals), *Gymnotus inaequilabiatus* (Valenciennes, 1839) (232 individuals), and *Knodus moenkhausii* (Eigenmann & Kennedy, 1903) (187 individuals) were the most abundant species, contributing with 86.1% of the collected individuals (Fig. 4). On the other hand, 19 species represented fewer than 10 individuals.

Regarding species richness, we identified 31 species (11 exclusive) at Água Boa stream, 31 (12 exclusive) at Santa Maria stream, and nine at Perobão stream (Table 2). As for constancy of occurrence, most species recorded at Água Boa stream were characterized as accessory (18 species among 31 captured), at Perobão stream as constant and accessory (4 among 9 captured), while at Santa Maria stream, fish fauna was mainly made up of occasional species (18 among 31 captured) (Table 2). In considering the origin of species, there was a predominance of autochthonous species (88.3%); only 5 were classified as allochthonous: *Brachyhypopomus aff. gauderio* Giora & Malabarba, 2009, *G. inaequilabiatus*, *Hoploberythrus unitaeniatus* (Agassiz, 1829), *K. moenkhausii*, and *Steindachnerina brevipinna* (Eigenmann & Eigenmann, 1889). Short descriptions following Graça and Pavanelli (2007) and/or taxonomic revisions for all captured species are herein provided, as well as photographs of some captured species (Fig. 5).

Order Characiformes

Family Anostomidae

Leporinus friderici (Bloch, 1794)

Salminus friderici Bloch 1794: 94 [original description].

Material examined. Table 2; Figure 5A.

Elongated body; terminal mouth; premaxilla and dentary with 4 teeth, no maxillary teeth. Lateral line with 37–41 pored scales; transversal series above lateral line with 4–5½ scale rows and below with 4–5½ scale rows. Dorsal fin with 11 or 12, pectoral fin with 15–17, pelvic fin with 9, anal fin with 10 and caudal fin with 19, total rays (Garavello 1979). Ground color silvery to yellowish; dorsal portion of iris red; 3 dark-brown rounded or oval, horizontally elongated, blotches on flank; region of contact between flank scales below lateral line with orange or red spots, forming longitudinal series. Fins yellowish.

Family Characidae

Aphyocharax anisitsi Eigenmann & Kennedy, 1903

Material examined. Table 2.

Elongated body; terminal mouth; premaxilla and dentary with 4–8 teeth, maxillary with 7–14, and maxilla with 1–4 teeth. Lateral line incomplete, with 7–10 pored scales; longitudinal series with 30–34 scales; transversal series above lateral line with 4–5 scale rows and below with 3½–5 scale rows. Dorsal fin with 9–11, pectoral fin with 9–12,
pelvic fin with 6–8, anal fin with 18–23, and caudal fin with 19, total rays (Lima 2003). Ground color silvery; no dark marks on body and fins. reddish fins, except dorsal and adipose fins.

Aphyocharax dentatus Eigenmann & Kennedy, 1903

Material examined. Table 2; Figure 5B.

Elongated body; terminal mouth, slightly prognathous; premaxilla with 4–8 teeth, dentary with 9–23, and maxilla with 8–17 teeth. Lateral line incomplete, with 8–13 pored scales; longitudinal series with 36–42 scales. Dorsal fin with 9–11, pectoral fin with 10–14, pelvic fin with 7–8, anal fin with 16–22, and caudal fin with 19, total rays (Lima 2003). Ground color silvery; diffuse, oval transversely elongated, humeral spot; no other dark marks on body and fin. Caudal fin red, other fins hyaline to yellowish.

Astyanax aff. fasciatus (Cuvier, 1819)
Chalceus fasciatus Cuvier 1819: 352, pl. 26 [original description].
Astyanax fasciatus—Castro et al. 2004: 32, fig. 4a, 5.
Astyanax aff. fasciatus—Graça and Pavanelli 2007: 54, 57; Bifi et al. 2017: 4, 5, fig. 2.5
Astyanax fasciatus—Hoffmann et al. 2015: 4, fig. A1.G.

Material examined. Table 2; Figure 5C.
Elongated body; terminal mouth; inner row of premaxilla with 5 teeth, outer with 4 or 5, dentary with 10–12, and maxilla with one tooth. Complete lateral line with 34–36 pored scales; transversal series above lateral line with 5 or 5½ scale rows and below with 5 scale rows. Dorsal fin with 11, pectoral fin with 15, pelvic fin with 9, anal fin with 24–28, and caudal fin with 19, total rays. Ground color silvery; dark vertically elongated humeral blotch; silvery longitudinal band on the flank (dark in fixed specimens) from humeral blotch to median caudal-fin rays, being larger on caudal peduncle and forming oval-shaped, horizontally elongated blotch. Reddish unpaired fins reddish and hyaline paired fins.

Astyanax aff. paranae Eigenmann, 1914

Astyanax scabripinnis paranae Eigenmann 1914: 47 [original description].

Astyanax aff. paranae—Graça and Pavanelli 2007: 54, 58; Bifi et al. 2017: 4, 5, fig. 2.7.

Astyanax paranae—Hoffmann et al. 2015: 4, fig. A1.H.

Material examined. Table 2; Figure 5D.

Elongated body; terminal mouth; inner row of premaxilla with 5 teeth, outer with 4 or 5, dentary with 8–13, and maxilla with 1 tooth. Complete lateral line with 38 or 39 pored scales; transversal series above lateral line with 5 or 5½ scale rows and below with 4 or 4½ scale rows. Dorsal fin with 11, pectoral fin with 15 or 16, pelvic fin with 9, anal fin with 17–23 and caudal fin with 19, total rays. Ground color silvery; dark vertically elongated humeral blotch followed by another similar dark humeral blotch, smaller than the first. Reddish fins.

Astyanax lacustris (Lütken, 1875)

Tetragonopterus lacustris Lütken 1875: 131 [original description].

Astyanax scabripinnis—Castro et al. 2004: 32, fig. 4a, 4.

Astyanax altiparanae—Graça and Pavanelli 2007: 54, 55; Hoffmann et al. 2015: 4; fig. A1.E.

Astyanax lacustris—Lucena and Soares 2016: 103, figs. 1, 6, 8, 9; Bifi et al. 2017: 4, 5, fig. 2.6.

Material examined. Table 2; Figure 5E.

Deep body; terminal mouth; inner row of premaxilla with 5 teeth, outer with 4 or 5, dentary with 8–16, and no maxillary teeth. Lateral line complete, with 33–41 pored scales; transversal series above lateral line with 6–8 scale rows and below with 4–8 scale rows. Dorsal fin with 12, pectoral fin with 12 or 13, pelvic fin with 8 or 9, anal fin with 22–34, and caudal fin with 19, total rays (Garutti and Britski 2000). Ground color silvery; 1 black rounded humeral blotch followed by another vertically elongated humeral blotch, silvery longitudinal band on the flank (dark in fixed specimens) from humeral blotch to median caudal-fin rays, being larger on caudal peduncle and forming oval-shaped, horizontally elongated blotch. Yellowish fins.

Piabarchus stramineus Eigenmann, 1908

Bryconamericus stramineus Eigenmann 1908: 105 [original description].—Castro et al. 2004: 32, fig. 4a–8; Graça and Pavanelli 2007: 60, 62; Hoffmann et al. 2015: 4, fig. A2.A.

Piabarchus stramineus—Thomaz et al. 2015: 20, fig. 10; Bifi et al. 2017: 4, 5, fig. 2.10.

Material examined. Table 2; Figure 5F.

Elongated body; terminal mouth; inner row of premaxilla with 4 teeth, outer row with 5 teeth; dentary with 9 or 10 teeth, and maxilla with 2 teeth. Lateral line with 36–38 pored scales; transversal series above lateral line with 4 rows and below with 3. Dorsal fin with 11 or 12, pectoral fin with 14 or 15, pelvic fin 9, anal fin with 20–22, and caudal with 19, total rays. Ground color silvery to yellowish; silvery longitudinal band (dark in preserved specimens), from humeral spot to caudal peduncle; black oval, vertically elongated, humeral spot. Caudal fin yellowish to orange; remaining fins hyaline, with dusky border _P. stramineus_ is very similar to _Bryconamericus exodon_ Eigenmann, 1907, except for its caudal-fin margin that is hyaline versus dark margin in the latter. _Piabarchus_ was described by presenting a long anal fin and its origin opposite to/or slightly in front of the dorsalfin origin. Recently, Thomaz et al. (2015) described the molecular phylogeny of the Stevardiinae and allocated _Bryconamericus stramineus_ in _Piabarchus_. Therefore, _P. stramineus_ can be distinguished from _P. analis_ (Eigenmann, 1914) and from _P. torrenticola_ Mahnert & Géry, 1988 by the origin of its anal fin being behind the dorsalfin origin.

Knodus moenkhausii (Eigenmann & Kennedy, 1903)

Poecilurichthys moenkhausii Eigenmann and Kennedy 1903: 522 [original description].

Material examined. Table 2; Figure 5G.

Elongated body; terminal mouth; inner row of premaxilla with 4, outer row with 4 or 5, dentary with 8 or 9 and maxilla with 2 or 3 teeth. Lateral line with 35–39 scales, transversal series above lateral line with 4½–5½ scales above and below with 3–4½ scale rows. Dorsal fin with 10, pectoral fin with 14 or 15, pelvic fin with 8 or 9, anal with 22–24, and caudal fin with 19, total rays. Ground color silvery to pale yellow; silvery longitudinal band (dark-brown in preserved specimens) from humeral spot to median caudal-fin rays; dark-brown crosswise elongated humeral spot. Yellowish fins but reddish during the reproductive period.

Moenkhausia australis (Eigenmann, 1908)

Moenkhausia australis Eigenmann 1908: 103 [original description].

Moenkhausia sanctaefilomenae—Reis et al. 2003: 150.

Material examined. Table 2; Figure 5H.

Deep body; terminal mouth; inner row of premaxilla with 5 teeth, outer with 3 or 4, dentary with 9–12 and maxilla with 1 or 2 teeth. Lateral line complete, with 19–26 pored scales; longitudinal series with 24–26 scales; transversal series above lateral line with 4, 4½ or 5 scale rows and below with 3, 3½ or 4 scale rows. Dorsal fin with 11, pectoral fin with 11–13, pelvic fin with 8, anal fin
with 24–27 and caudal fin with 19, total rays. Ground color silvery; scales with dark-brown border, conferring reticulated pattern to body; 1 dark-brown humeral spot; anterior half of caudal peduncle with light area. Hyaline fins, except caudal fin. _Moenkhausia australis_ is morphologically similar to _M. forestii_ and _M. sanctaefilomenae_, but can be distinguished from them by having lateral line completely pored, rarely disrupted (vs lateral line incompletely pored, in _M. forestii_ and _M. sanctaefilomenae_).

Moenkhausia bonita Benine, Castro & Sabino, 2004

Moenkhausia bonita Benine et al. 2004: 68, fig. 1 [original description].

Hemigrammus marginatus—Graça and Pavanelli 2007: 63.

Material examined. Table 2; Figure 5I.

Elongated body; terminal mouth; inner row of premaxilla with 5 teeth, outer with 2–5, dentary with 4 and maxilla with 2 or 3 teeth. Lateral line complete, with 29–34 pored scales; transversal series above lateral line with 5 scale rows and below with 3 scale rows. Dorsal fin with 11, pectoral fin with 12–13, pelvic fin with 8, anal fin with 24–26 and caudal fin with 19, total rays (Benine et al. 2004). Ground color silvery to pale yellow; dark-brown longitudinal stripe from opercle (conspicuously from vertical through dorsal-fin origin) to median caudal-fin rays; distal portion of caudal-fin lobes equally dark brown.

Oligosarcus pintoi Campos, 1945

Oligosarcus pintoi Campos 1945: 456, fig. 9 [original description].

Material examined. Table 2; Figure 5J.

Deep body; terminal mouth terminal; premaxilla with 10–12 teeth, dentary with 10–18, and maxilla with 15–23 teeth. Lateral line complete, with 36–40 pored scales; transversal series above lateral line with 7–9 scale rows and below with 6–8 scale rows. Dorsal fin with 12, pectoral fin with 14–17, pelvic fin with 9, anal fin with 28–33 and caudal fin with 19, total rays (Menezes 1987). Ground color yellowish to silvery; black rounded humeral spot, distal portion of caudal-fin lobes equally dark brown.

Piabina argentea Reinhardt, 1867

Piabina argentea Reinhardt 1867: 50, fig. 1 [original description].

Material examined. Table 2; Figure 5K.

Elongated body; subterminal mouth; outer row of premaxilla with 2 or 3 teeth, median row with 2 and inner row with 4, dentary with 6 or 7 and maxilla with 2 or 3 teeth. Lateral line complete, with 37–39 pored scales; transversal series above lateral line with 5 scales above and below with 3 or 4 scale rows. Dorsal fin with 10, pectoral fin with 12–13, pelvic fin with 9, anal fin with 18–21, and caudal fin with 19, total rays (Vari and Harold 2001). Ground color silvery to pale yellow; black humeral spot, with irregular limits; dark-brown longitudinal band, from humeral spot to median caudal-fin rays. Hyaline fins.

Serrapinnus notomelas (Eigenmann, 1915)

Cheirodon notomelas Eigenmann 1915: 74 [original description].

Material examined. Table 2; Figure 5L.

Elongated body; terminal mouth; premaxilla with 4 or 5, dentary with 6 or 7 and maxilla with 1 or 2 teeth. Lateral line incompletely pored, with 5–7 pored scales; longitudinal series with 30–34 scales; transversal series above lateral line with 3½ or 4 scale rows and below with 3 or 3½ scale rows. Dorsal fin with 10 or 11, pectoral fin with 12 or 13, pelvic fin with 8 or 9, anal fin with 19–24 and caudal fin with 19, total rays. Ground color whitish; dark brown diffuse longitudinal stripe on flank, from pseudotympanum to caudal peduncle; black rounded blotch on posterior portion of caudal peduncle and caudal-fin base, not extended to median caudal-fin rays. Dorsal fin with dark chromatophores along two unbranched e first branched rays and proximal half of remaining; pectoral, pelvic, anal and caudal fins yellowish.

Family Crenuchidae

Characidium gomesi Travassos, 1956

Characidium gomesi Travassos 1956: 3, fig. 1 [original description].

Material examined. Table 2; Figure 5M.

Elongated body; terminal mouth; premaxilla with 6 or 7, dentary with 8–10 and maxilla with no teeth. Isthmus without scales. Lateral line with 34 or 35 pored scales; transversal series above lateral line with 4 scale rows and below with 2 or 2½ scale rows. Dorsal fin with 11, pectoral fin with 11–13, pelvic fin and anal fin with 8 or 9, and caudal fin with 18, total rays. Ground color brown; 3 dark brown longitudinal stripes on dorsal region of body; dark brown stripe from tip of snout to orbit; dark brown longitudinal stripe on flank, from humeral spot caudal peduncle; dark brown transversal bars on flank, conspicuous on caudal peduncle; dark brown spot at base of median caudal-fin rays. Hyaline fins; dorsal fin with 2 dark brown oblique stripes; adipose fin with distal portion darkened; posterior half of pectoral, pelvic and anal-fin rays darkened; caudal fin with 2 dark-brown transversal bars.

Characidium aff. zebra Eigenmann, 1909

Characidium zebra Eigenmann 1909: 38 [original description].

Material examined. Table 2; Figure 5N.

Elongated body; terminal mouth terminal; isthmus covered by scales; premaxilla with 9, dentary with 10 or 11 teeth and no maxillary teeth. Lateral line with 34–37
pored scales; transversal series above lateral line with 4 scale rows and below with 3½–4 scale rows. Dorsal fin with 11, pectoral fin with 13 or 14, pelvic fin with 9, anal fin with 9 rays, and caudal fin with 18 or 19, total rays. Ground color pale yellow; dark-brown longitudinal stripe from humeral spot to caudal peduncle; 8 to 10 dark brown transversal bars on flank; black spot on the base of median caudal-fin rays; hyaline fins.

Family Curimatidae

Cyphocharax modestus (Fernández-Yépez, 1948)

Curimatorbis modestus Fernández-Yépez 1948: 43, fig. 21 [original description].

Material examined. Table 2; Figure 5O.

Deep body; terminal mouth; premaxilla, dentary and maxilla without teeth. Lateral line with 31–36 pored scales; transversal series above lateral line with 5½–7 scale rows and below with 4½–6 scale rows. Dorsal fin with 11 or 12, pectoral fin with 14–16, pelvic fin with 9 or 10, anal fin with 8 or 9 and caudal fin with 19, total rays (Vari 1992). Ground color silvery; dark brown inconspicuous longitudinal band along lateral line to distal margin of median caudal-fin rays, larger on caudal peduncle; hyaline fins.

Steindacherina brevipinna (Eigenmann & Eigenmann, 1889)

Curimatus gilberti brevipinnis Eigenmann and Eigenmann 1889: 424 [original description].

Steindacherina brevipinna—Graça and Pavanelli 2007: 32, 33.

Material examined. Table 2; Figure 5P.

Elongated body; terminal mouth; premaxilla, dentary, and maxilla without teeth; palate with irregular glomerular projections. Lateral line with 33–37 pored scales; transversal series above lateral line with 5½–7 scale rows and below with 4½–5½. Dorsal fin with 10–12, pectoral fin with 11–14, pelvic fin with 9, anal fin with 9 or 10, and caudal fin with 19, total rays (Vari 1991). Ground color silvery; black conspicuous longitudinal stripe along lateral line to distal margin of median caudal-fin rays, larger on caudal peduncle; yellowish fins; dorsal-fin black blotch on the base of median rays, sometimes little conspicuous.

Family Erythrinidae

Hoplerythrinus unitaeniatus (Agassiz, 1829)

Material examined. Table 2; Figure 5Q.

Elongated and cylindrical body; terminal mouth; premaxilla with 8–10, dentary with 35–38, and maxilla with 32–36 teeth. Lateral line with 35–39 pored scales; transversal series above lateral line with 3½ scale rows and below with 3 scale rows. Dorsal fin with 11, pectoral fin with 14 or 15, pelvic fin with 8, anal fin with 13 or 14, and caudal fin with 19, total rays. Brown ground color with dorsal regions darker than the ventral ones; dark brown rounded blotch on opercle; dark brown longitudinal band from opercle to caudal-fin base; dark fins; without adipose fin.

Hoplias sp. 3

Hoplias sp. 3—Graça and Pavanelli 2007: 106.

Material examined. Table 2; Figure 5R.

Elongated body; terminal mouth; premaxilla with 8–10; dentary with 30–35; maxilla with 32–36 teeth. Lateral line with 40–42 pored scales; series between lateral lines with 113 scale rows. Dorsal fin with 13, pectoral fin with 13 or 14, pelvic fin with 8, anal fin with 8–11 rays and caudal fin with 19, total rays. Ground color pale brown; dark-brown longitudinal band, from opercle to caudal peduncle; several dark-brown irregular transversal bars. Fins with dark-brown spots, sometimes forming dark brown stripes parallel with fin base. This species is predatory to small fish. It lives in habitats structured mainly by macrophytes, exhibiting sedentary habits and parental care.

Family Lebiasinidae

Pyrrhulina australis Eigenmann & Kennedy, 1903

Pyrrhulina australis Eigenmann and Kennedy 1903: 508 [original description].

Material examined. Table 2; Figure 5S.

Elongated body; terminal mouth; inner row of premaxilla with 9–12 and outer row with 4–6 teeth, inner row of dentary with 8–12 and outer row with 4–5, and maxilla with 1 or 2 teeth. Lateral line absent; longitudinal series with 20–25 scales; transversal series with 6–8 scale rows. Dorsal fin with 9 or 10, pectoral fin with 11 or 12, pelvic fin with 9 or 10, anal fin with 10 or 11, and caudal fin with 19, total rays. Ground color pale brown; dark brown longitudinal stripe from the anterior portion of the dentary, through orbit, to opercle; yellowish fins; black irregular blotch on the dorsal fin. Some specimens can present few or many dark blotches on body.

Family Parodontidae

Apareiodon affinis (Steindacher, 1879)

Parodon affinis Steindacher 1879: 20 [original description].

Apareiodon affinis—Graça and Pavanelli 2007: 26, 27.

Material examined. Table 2; Figure 5T.

Elongated body; subterminal mouth; premaxilla with 4 or 5, maxilla with 2 or 3 and dentary with no teeth. Lateral line with 39–46 pored scales; transversal series above lateral line with 4½ or 5 scale rows and below with 3 or 4½ scale rows. Dorsal fin with 10–13, pectoral fin with 11–14, pelvic fin with 7–9, anal fin with 7 or 8 rays and caudal fin with 18 or 19, total rays (Pavanelli 1999). Ground color silvery to pale yellow; black longitudinal band along lateral line, from opercle to median caudal-
fin rays, without adjacent dark blotches downwards; 6–8 dark brown transversal bars above longitudinal band; hyaline fins or with few scattered dark cromatophores.

Parodon nasus Kner, 1859

Parodon nasus Kner 1859: 167, fig. 17 [original description]—Graça and Pavanelli 2007: 30; Bifi et al. 2017: 4, fig. 2.2.

Material examined. Table 2; Figure 5U.

Elongated body; subterminal mouth; premaxilla with 4, dentary with 2–4 and maxilla with 2 teeth. Lateral line with 35–39 pored scales; transversal series above lateral line with 4½ scale rows and below with 3 or 3½ scale rows. Dorsal fin with 11 or 12, pectoral fin with 13–16, pelvic fin with 8 or 9, anal fin with 8 or 9 and caudal fin with 19, total rays (Pavanelli 1999). Ground color pale brown dorsally and pale yellow ventrally; black longitudinal band along lateral line, from opercle to median caudal-fin rays, with projections upwards and downwards, conferring zigzag pattern; hyaline or yellowish fins.

Order **Cyprinodontiformes**

Family **Poeciliidae**

Phalloceros harpagos Lucinda, 2008

Phalloceros sp. n—Lucinda and Reis 2005.

Phalloceros harpagos Lucinda 2008: 134, 135; fig. 27 [original description]—Hoffmann et al. 2015: 4, fig. A5.A; Bifi et al. 2017: 4, fig. 2.27.

Material examined. Table 2; Figure 5V.

Elongated body; superior mouth, dentary prognathous; premaxilla and dentary with several small teeth. Longitudinal series with 26–32 scales and transversal series with 7–9 scale rows. Dorsal fin with 7–9, pectoral fin with 11–13, pelvic fin with 5 or 6, and anal fin with 8–10 (males) or 10–12 rays (females) (Lucinda 2008). Adult males with gonopodium. Ground color yellowish-brown; dark brown median, one lateral line, one inferior medial and one at anal-fin base.

Order **Gymnotiformes**

Family **Gymnotidae**

Elongated and compressed body; terminal mouth. Pectoral fin with 14–17 and anal fin with 179–226, total rays; transversal series above lateral line with 7 or 8 scale rows (Fernandes et al. 2005). Ground color brown; body with seven to 25 light transversal stripes, spaced apart; hyaline fins or light, with scattered dark brown spots.

Family **Hypopomidae**

Brachyhypopomus aff. gauderio Giora & Malabarba, 2009

Brachyhypopomus sp.—Giora et al. 2008: 167.

Brachyhypopomus cf. pinnicaudatus—Graça and Pavanelli 2007: 188.

Brachyhypopomus gauderio Giora and Malabarba 2009: 63, 64, Figs. 1, 2 [original description].

Material examined. Table 2; Figure 5X.

Elongated and compressed body; terminal mouth. Pectoral fin with 14–17 and anal fin with 179–226, total rays; transversal series above lateral line with 7 or 8 scale rows. Ground color varies from yellowish to pale brown; dorsal region and lower half of the body with dark brown transversal and irregular bars; anal fin is hyaline with dark brown spots.

Family **Sternopygidae**

Eigenmannia guairaca Peixoto, Dutra & Wosiacki, 2015

Eigenmannia guairaca Peixoto et al. (2015): 394, Fig. 9 [original description].

Material examined. Table 2.

Elongated and compressed body; terminal mouth; premaxilla with 9 or 10 teeth distributed in two rows. Lateral line complete, with 110–143 pored scales; transversal series above lateral line with 9–11 scale rows. Pectoral fin with 12 or 13 and anal fin with 151–170, total rays (Peixoto et al. 2015). Ground color pale brown; four dark-brown longitudinal stripes on flank (one superior medial, one lateral line, one inferior medial and one at anal-fin base).

Order **Cichlididae**

Eigenmannia guairaca Peixoto, Dutra & Wosiacki, 2015

Eigenmannia guairaca Peixoto et al. (2015): 394, Fig. 9 [original description].

Material examined. Table 2; Figure 5W.

Elongated and compressed body; superior mouth, dentary prognathous; one or two conical teeth on the premaxilla and dentary. Transversal series above lateral line with 6–8 scale rows. Pectoral fin with 13–16 and anal fin with 170–260, total rays. Ground color pale brown; body with light transversal bars alternating with dark brown transversal bars, visible in specimens with less than 250 mm total length (TL); in larger specimens stripes can be broken or disappear, resulting in color pattern with dark-brown rounded or irregular blotches, especially on dorsal region of body; dark-brown bars wider than light bars. Hyaline fins, with scattered dark-brown spots. Body with 21 or 22 pairs of obliquely dark bands from the tail tip to nape. Pectoral and anal fins are uniformly dark gray, and the posterior part of the anal fin is pale.
Elongated body; terminal mouth. Lateral line with 4 pores on upper series of plates. Dorsolateral series with 26–29 and ventrolateral series with 24–27 plates. Dorsal fin with I,7 or 8, pectoral with I,6, pelvic and anal fins with 6, total rays. Ground color pale brown to dark grey; dark fins with dark spots. Coracoid bone, between pectoral fins, covered by skin.

Corydoras aeneus (Gill, 1858)

Hoplosternum littorale (Hancock, 1828)

Ctenopoma affinis (Gomes, 1956)

Imparfinis schubarti (Gomes, 1956)
Pimelodella avanhandavae Eigenmann, 1917

Pimelodella avanhandavae Eigenmann 1917: 240, pl. 29; fig. 3 [original description]—Graça and Pavanelli 2007: 145, 146.

Material examined. Table 2; Figure 5A'.

Elongated body; terminal mouth; premaxilla and dentary with several small and villiform teeth. Dorsal fin with I,6; pectoral fin with I,9 or 10; pelvic fin with 6 and anal fin with 12–14, total rays. Ground color beige; dark brown longitudinal bands, 1 along the lateral line and another slightly below the dorsal fin; light fins.

Pimelodella gracilis (Valenciennes, 1835)

Pimelodella gracilis Valenciennes 1835: pl. 2, fig. 5 [original description].

Material examined. Table 2.

Elongated body; terminal mouth; premaxilla and dentary with several diminute and villiform teeth. Dorsal fin with I,6, pectoral fin with I,9 or 10, pelvic fin with 6 and anal fin with 12–14, total rays. Ground color beige; dark brown longitudinal band along lateral line; light fins.

Rhamdia quelen (Quoy & Gaimard, 1824)

Rhamdia quelen—Graça and Pavanelli 2007: 149; Hoffmann et al. 2015: 4, fig. A3.B.

Material examined. Table 2.

Elongated body; terminal mouth; premaxilla and dentary with several diminute and villiform teeth. Dorsal fin with I,7, pectoral fin with I,6, pelvic fin with i,5 and anal fin with 6, total rays. Ground color brownish; dark brown blotches on body, especially on the dorsal region; dark fins with dark brown spots.

Hypostomus ancistroides (Ihering, 1911)

Plecostomus ancistroides Ihering 1911: 396 [original description].

Material examined. Table 2; Figure 5B'.

Deep body; inferior mouth; teeth bifid; premaxilla with 32–41 and dentary with 35–42 teeth. Mid-lateral series with 24–27 plates, predorsal series with 3, and dorsal-fin base series with 8 plates. Dorsal fin with I,7, pectoral fin with I,6, pelvic fin with i,5, and anal fin with 6, total rays. Ground color brownish; dark brown blotches, occasionally inconspicuous.

Hypostomus strigaticeps (Regan, 1908)

Plecostomus strigaticeps Regan 1908: 796, pl. 48, fig. 1 [original description].

Material examined. Table 2, Figure A4.E; Bifi et al. 2017: 4, fig. 2.23.

Deep body; inferior mouth; teeth bifid; premaxilla with 49–54 and dentary with 49–55 teeth. Mid-lateral series with 24–26 plates, predorsal series with 3, and dorsal-fin base series with 8 plates; abdomen with plates concentrated on its central portion. Dorsal fin with I,7, pectoral fin with I,6, pelvic fin with i,5 and anal fin with 6, total rays. Ground color brown; light blotches on body, smaller on head; dark fins with light spots.

Otothyropsis polyodon Calegari, Lehmann & Reis, 2013

Otothyropsis polyodon Calegari et al. 2013: 133, fig. 3 [original description].

Material examined. Table 2, Figure C'.

Elongated body; inferior mouth; premaxilla and dentary with 14–21 teeth. Lateral line series with 24 or 25 plates. Dorsal fin with I,7, rarely 8, pectoral fin with I,6, pelvic fin with 6 and anal fin with 6, total rays (Calegari et al. 2013). Ground color brown; dark brown longitudinal stripe from snout to caudal fin; hyaline fins, with dark brown spots; upper caudal-fin lobe with dark brown spot close to its tip; lower caudal-fin lobe dark, with hyaline portion on its lower portion, frequently with small dark brown spots.

Rineloricaria sp.

Material examined. Table 2, Figure D'.
Depressed body; inferior mouth; premaxilla and dentary with 6 teeth. Mid-lateral series with 28 plates. Dorsal fin with I,7, pectoral fin with I,6, pelvic fin with i,5 and anal with 6 total rays. Ground color brownish; dark brown transversal bars on flank; hyaline fins with few dark brown spots, sometimes forming irregular stripes.

Discussion

The taxonomic composition of the 3 studied streams was not different from the pattern described for the South America freshwater fish fauna, given the predominance of Characiformes and Siluriformes orders (Albert et al. 2011, Hulse and López-Fernández 2011), which included 83% of the captured species. In addition, the record of 18 of the 34 families listed by Buckup (1999) for Brazilian streams draws attention to the high richness of the Iguatemi river fish fauna, considering that only 3 streams were sampled. The families with the highest number of species in our study (Characidae, Heptapteridae, and Loricariidae) were also reported by Langeani et al. (2007) as the most species-rich in the upper Paraná river basin. Similarly, several studies have indicated the prevalence of these families in other streams of this basin (Casatti et al. 2001, Cunico et al. 2009, Sáuer and Lima-Júnior 2009, Felipe and Sáuer 2010, Pereira et al. 2014, Frota et al. 2016, Bifi et al. 2017). In addition, the most representative species in number of individuals, P. harpago, A. aff. paranae, H. ancistroides, G. inaequilabiatus, and K. moenkhausii, were also numerically important in other surveys conducted in streams of the upper Paraná river basin (Casatti et al. 2001, Castro et al. 2004, Casatti 2005, Ferreira 2007, Daga et al. 2012, Mendonça et al. 2014).

It is also important to emphasize that the species richness of Água Boa and Santa Maria streams (both with 31 species) are well above those recorded in other streams of the upper Paraná river basin (see Casatti 2004, Rocha et al. 2009, Felipe and Sáuer 2010), even including pristine streams (see Casatti et al. 2001). This finding once again highlights the role of the Iguatemi river basin in harboring a diverse fish fauna in its streams. In fact, the number of species recorded in the three streams inventoried here, accounts for 29% of the representativeness of ichthyofauna of the upper Paraná River floodplain presented by Graça and Pavanelli (2007), and 15% of the species of the Mato Grosso do Sul state recorded by Froehlich et al. (2017). Therefore, we advocate that the sampled area is intimately associated with maintaining the biodiversity of fish species in the floodplain, serving as refuges, and encompassing a good percentage of fish species of the state within a small area.

The high fish species richness of streams could be related to 3 main factors. The first concerns about the small body size of individuals inhabiting streams; the speciation rate is assumed to be inversely related to body size (Marzluff and Dial 1991, Brown 1995). These habitats may contain more niches for small organisms than large ones; therefore, in principle, small-bodied species would be less prone to extinction (Purvis et al. 2003). The second factor is related to the environmental complexity of streams (Castro et al. 2003, Copatti and Copatti 2011) as the mosaic of pools, runs, and riffles clearly delimit different combinations of flow, depth, and substrate (Angermeier and Schlosser 1989); thus, it is expected that every mesohabitat hold unique species given the resources and conditions available. The third factor has to do with the degree of conservation of riparian vegetation, as fish species richness is positively associated with surrounding vegetation integrity (Ferreira and Casatti 2006). The deleterious effects caused by the removal of this vegetation bordering streams include: increased solar radiation and consequent rise in water temperature, reducing fish tolerance to toxic gases such as ammonia; development of toxic Cyanophyceae; the silting-up of the bed; reduced leaf, trunk, and branch inputs that shelter and provide substrate for the development of organisms consumed by the fish (Pusey and Arthington 2003, Casatti 2010). These impacts can substantially alter the composition and abundance of fish assemblages inhabiting streams (Agostinho et al. 2007, Casatti et al. 2010). Whereas the riparian vegetation surrounding these streams is poor, due to anthropogenic action, the fish assemblages may already be under such deleterious effects.

This conception of constancy of species can illustrate the spatial occupation of fish assemblages (Begon et al. 2007), discriminating migrant and resident populations (Dajoz 1983, Langeani et al. 2005). The greatest number of accessory and occasional species recorded in Água Boa and Santa Maria suggests a high exchange of species between these streams and Iguatemi River, as long as fish may use these environments in the search for resources. Sáuer and Petrere-Júnior (2006) drew similar inferences for Jogui region, Iguatemi river basin and Viana et al. (2013) for Bonito region, Ivaí river basin.

In addition, the fish fauna of the sampled streams was primarily composed of autochthonous species, following the pattern described for the species of the upper Paraná River (Langeani et al. 2007). Regarding the 5 allochthonous species, we may report that K. moenkhausii and S. brevipinna reached the upper Paraná river basin after the construction of Itaipu Reservoir (Júlio-Júnior et al. 2009). In turn, B. aff. gauderio and H. unitaeniatus were introduced by fishing activities, possibly as live bait, while the origin of G. inaequilabiatus in the basin is unknown (Langeani et al. 2007). Therefore, the presence of these 5 species in the streams highlights their dispersal abilities and success in the occupation of low order rivers.

In general, our study shows that streams of the lower portion of the Iguatemi river basin encompass a diverse fish fauna, in contrast to the anthropogenic impacts affecting the microbasins. This calls the attention to the urgency of primary management measures in the studied microbasins, such as the implementation and/or extension of soil conservation practices and riparian vegetation restoration, to help the maintenance of fish populations.
Acknowledgements

The authors are grateful to the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT) for financial support; to Cláudio Zawadzki (UEM) for help in Loricariidae identification, and Carlos Oliveira (UEM) for help in Aptygynax identification. AF is supported by a scholarship from CNPq, DB is supported by CAPES/PNPd, and WJG is supported by grants from the Fundação Araucária (SETI-PR).

Authors’ Contributions

All authors contributed to the drafting and editing of the manuscript. AF took the photographs. WJG identified the specimens. VFBS, EALK, and MCFRA participated in the data collection.

References

