Range extension of *Hypostomus cochliodon* Kner, 1854 (Siluriformes: Loricariidae) in Bermejo River, Salta, Argentina

Guillermo Enrique Terán¹, Felipe Alonso², Gastón Aguilera³* and Juan Marcos Mirande⁴

¹ Unidad Ejecutora Lillo (CONICET)-Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, CEP 4000, Tucumán, Argentina
² Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN)-CONICET, División Ictiología, Av. Ángel Gallardo 470, Buenos Aires, CEP 1405, Argentina
* Corresponding author. E-mail: gaguilera@lillo.org.ar

Abstract: *Hypostomus cochliodon* Kner, 1854 had been recorded from Paraguay and Paraná rivers in Argentina. We recorded for the first time specimens of *H. cochliodon* to the Bermejo River basin. It is also the first record of this species to Salta province, Argentina.

Key words: biogeography; distribution; northwestern Argentina; first record; Hypostominae

The Loricariidae include over 900 species in 70 genera, being the most diverse family within Siluriformes (Eschmeyer and Fong 2015). This family includes species with the body covered by bony plates and showing a great diversity of size, from the smallest *Nannoplecostomus eleonora* Ribeiro, Lima & Pereira, 2012 (about 9 mm SL) to the largest forms, such as the ancistrine *Pseudacanthicus histrix* (Valenciennes, 1840) (reaching 900 mm SL).

Within Loricariidae, Hypostominae is the most species-rich subfamily and the most geographically widespread (Eschmeyer and Fong 2015). Armbruster (2004), after a phylogenetic analysis of the Hypostominae, considered *Cochliodon* Heckel, 1854 as synonym of *Hypostomus* Lacépède, 1803.

Hypostomus is one of the most diverse loricariid genera, including about 130 valid species (Eschmeyer et al. 2015). This genus has a wide distribution in the Neotropical basins, occurring from Central America to La Plata River in Argentina.

Species of the *Hypostomus cochliodon* group, along with *Panaque* Eigenmann & Eigenmann, 1889, are distinctive among fishes by feeding on wood as the major part of the diet (Schaefer and Stewart 1993; Armbruster 2003). Those species share the presence of large spoon-shaped teeth, which was independently acquired in *Panaque* and the *H. cochliodon* group, according to the hypothesis of Armbruster (2004).

Currently, 20 valid nominal species are included in the *H. cochliodon* group (Armbruster 2003; Tencatt et al. 2014). In Argentina, this group is represented only by *Hypostomus cochliodon* Kner, 1854, which was described from the Cuiabá River basin, Brazil (Kner 1854: 265) but can be found along the Paraguay and Paraná rivers (Armbruster 2003; Weber 2003; Zawadzki et al. 2005; Graça and Pavanelli 2007; Tencatt et al. 2014; Almirón et al. 2015).

The Bermejo River is one of the most important hydrographic systems of Argentina and one of the most important tributaries of the Río de la Plata system. A recent collecting expedition to northwestern Argentina allowed us to record *Hypostomus cochliodon* from the upper Bermejo River basin (Figure 1).

Morphometric measurements were taken following Tencatt et al. (2014); they were taken with a caliper to nearest 0.01 mm, are straight lines between two points, and expressed as percentage of standard length (SL) and head length (HL).

Specimens herein reported were collected after intense fieldwork in the upper Bermejo River basin, done under permit (Number 335/15 and 594/15, issued by Secretaría de Ambiente of Salta province). Specimens were captured using hand nets. Voucher specimens were euthanized by an overdose in benzocaine solution, fixed in 4% formalin solution for 7 days and preserved in 70% ethanol.

Institutional abbreviation: CI-FML. Ichthyological collection of Fundación Miguel Lillo.

Examined material. CI-FML 7091, 10 specimens, 55.2–230.0 mm SL, Argentina, Salta, Bermejo River basin, 23°10′56″ S, 064°12′18.36″ W, September 2015, Mirande, Aguilera, Alonso, and Terán. CI-FML 7092, 1 specimen, 75.8 mm SL, Argentina, Salta, San Ramón de la Nueva Orán, Aguas Lindas stream, Bermejo River basin, 23°00′53″ S, 064°21′54″ W, September 2015, Mirande, Aguilera, Alonso, and Terán. CI-FML 7093, 2 specimens, 51.4–100.8 mm SL, Argentina, Salta, San Ramón de la Nueva Orán, unnamed stream between Pescado and Blanco River, Bermejo River basin, 23°01′33″ S,
Terán et al. | Hypostomus cochliodon in Bermejo River basin

According to Tencatt et al. (2014), *Hypostomus cochliodon* can be distinguished from the other species of the *H. cochliodon* group by the following characters: 1) opercle almost completely covered by a thick layer of skin and exposed region not easily visible; 2) absence of buccal papillae; 3) presence of weak to moderately developed keels on lateral plates; 4) presence of small dark spots closely-set on head and larger, widely spaced spots on trunk, with caudal peduncle generally without spots; 5) caudal-fin lobes evenly colored; 6) bicuspid teeth with a large spoon-shaped mesial cusp and inconspicuous lateral cusp that is generally fused to mesial cusp; 7) absence of a longitudinal dark stripe along midline of flank; and 8) presence of an adipose fin. All these characters are shared by the specimens collected at the Bermejo River basin (Figures 2–4), allowing us to identify them as *H. cochliodon*.

As it was reported by Tencatt et al. (2014), the coloration pattern is highly variable in this species with some individuals more spotted than others. Such variation was also found in the specimens from the Bermejo River basin.

The coloration in life of one of the collected specimens showed a stress color pattern (Figure 4) in which the individual is very dark with black stripes dorsally. This is frequently observed in life (Tencatt pers. com.), but this coloration is lost after fixation. Color changes may be important for communication and intra- or interspecific signaling in Loricariidae, and it would be interesting to investigate its relationship with reproduction, physiology and agonistic behaviors.

Morphometric measurements of *H. cochliodon* from the Bermejo River basin are provided in Table 1.

After an intensive sampling performed at northwestern Argentina in the Bermejo River basin, the main western tributary to the Paraguay–Paraná system, we collected specimens identified as *Hypostomus cochliodon*, according to the diagnosis provided by Tencatt et al. (2014). Those new records for this basin considerably extend the known distribution range of this species and also represent the first record for *H. cochliodon* in the Yungas province (*sensu* Morrone 2014) and the highest...
altitude (350 m above sea level) recorded for this species, in addition to the first record for Salta province.

The upper Bermejo River basin has rocky bottoms and moderately fast to fast-flowing waters that run from west to east through the Andes to the chacoan plain. Rains are mainly concentrated in summer and most rivers in the area have a highly torrential regime during that period with high amounts of suspended particles and turbidity, while the volume of water is considerably diminished during the rest of the year.
when water is very clear and transparent. Most streams in the upper Bermejo River basin, in the lower portion of the Yungas, where *H. cochliodon* was collected, have abundant marginal vegetation and rocky bottoms. When the Bermejo River reaches the chaco-pampean plain, near the city of Embarcación in Salta, a sudden ecological change is observed; the bottom is muddy, driftwood is abundant and the water is turbid, with a great amount of solids in suspension the whole year, Orbital diameter 12.2–19.1 16.5 1.8 1.5
Lower lip length 39.0–49.3 43.2 2.7
Lower caudal-fin ray length 11.4–17.9 14.9 1.6
Maxillary barbel length 8.0–12.3 9.5 1.3

ACKNOWLEDGEMENTS

We are grateful to Luiz Tencatt for helping us on the identification of this species, and valuable comments on the coloration pattern variation. We thank the Fundación Miguel Lillo, CONICET, and FONCyT (PICT 2011-0992 and 2012-2683; PIP 0301) for constant support. Two reviewers improved the manuscript with comments and suggestions.

LITERATURE CITED

Table 1. Morphometric measurements of *Hypostomus cochliodon*, CI-FML 7091-7093, from Bermejo River basin, Salta, Argentina (*n* = 13). SD = standard deviation.

<table>
<thead>
<tr>
<th>Range</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predorsal length</td>
<td>37.3–45.4</td>
<td>42.5</td>
</tr>
<tr>
<td>Head length</td>
<td>29.3–38.7</td>
<td>35.0</td>
</tr>
<tr>
<td>Interdorsal distance</td>
<td>15.1–18.5</td>
<td>16.8</td>
</tr>
<tr>
<td>Thoracic width</td>
<td>21.4–23.9</td>
<td>22.5</td>
</tr>
<tr>
<td>Abdominal width</td>
<td>19.7–21.8</td>
<td>20.7</td>
</tr>
<tr>
<td>Caudal peduncle length</td>
<td>24.2–34.9</td>
<td>31.8</td>
</tr>
<tr>
<td>Caudal peduncle depth</td>
<td>8.7–10.3</td>
<td>9.2</td>
</tr>
<tr>
<td>Dorsal-fin spine length</td>
<td>20.7–36.7</td>
<td>32.6</td>
</tr>
<tr>
<td>Dorsal-fin base length</td>
<td>23.0–29.2</td>
<td>25.9</td>
</tr>
<tr>
<td>Pectoral-fin spine length</td>
<td>26.8–32.0</td>
<td>29.2</td>
</tr>
<tr>
<td>Pelvic-fin spine length</td>
<td>23.5–26.7</td>
<td>25.1</td>
</tr>
<tr>
<td>Upper caudal-fin ray length</td>
<td>32.5–49.5</td>
<td>42.9</td>
</tr>
<tr>
<td>Lower caudal-fin ray length</td>
<td>30.6–51.2</td>
<td>46.3</td>
</tr>
<tr>
<td>Adipose-fin spine length</td>
<td>6.1–6.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Cleftoral length</td>
<td>28.1–31.1</td>
<td>29.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head length</td>
<td>55.5–77.0</td>
<td>61.0</td>
</tr>
<tr>
<td>Snout length</td>
<td>58.3–73.7</td>
<td>62.7</td>
</tr>
<tr>
<td>Interorbital width</td>
<td>43.8–55.6</td>
<td>48.4</td>
</tr>
<tr>
<td>Orbital diameter</td>
<td>12.2–19.1</td>
<td>16.5</td>
</tr>
<tr>
<td>Lower lip width</td>
<td>39.0–49.3</td>
<td>43.2</td>
</tr>
<tr>
<td>Lower caudal-fin ray length</td>
<td>11.4–17.9</td>
<td>14.9</td>
</tr>
<tr>
<td>Maxillary barbel length</td>
<td>8.0–12.3</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Author contributions: GET wrote the note and analyzed the specimens, GA took the measurements, FA made the map, and JMM compared the specimens with the related species. GA and FA photographed the specimens. All authors contributed to write the manuscript.

Received: 25 November 2015
Accepted: 27 July 2016
Academic editor: Bárbara Calegari