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Abstract
Understanding the potential distribution of non-native species can be an important tool in preventing biological inva-
sions. We recorded for the first time Psellogrammus kennedyi, a small non-native characiform, in the Lower Paranapa-
nema River, Brazil. According to environmental variables and prediction modeling, the species presents high potential 
distribution in the Upper Paraná river basin. The model used herein is an efficient tool to determine where non-native 
species may be able to establish. This approach can be used as a preventive measure, once the control and eradication 
measures are often ineffective and uneconomical.
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Introduction
The Lower Paranapanema River, a major tributary of 
the Upper Paraná River system, shares many fish spe-
cies which naturally occurs in the neighboring Para-
guay–Lower Paraná River system (Jarduli et al. 2020). 
Several non-native species were introduced in the Upper 
Paraná basin due to the removal of the natural biogeo-
graphic barrier at Sete Quedas Falls due to the construc-
tion of the Itaipu Dam (Júlio Júnior et al. 2009; Ota et al. 
2018). The introductions of these species have substan-
tially modified the Paranapanema ichthyofauna, coupled 

with altered lentic conditions caused by impoundment, 
which suggests that the rivers’ native fishes are increas-
ingly threatened (Garcia et al. 2018a).

Recently, Jarduli et al. (2020) reviewed 90 indepen-
dent studies. They compiled 225 fish species present 
in the Paranapanema river basin, and Psellogrammus 
kennedyi (Eigenmann, 1903) had not been previously 
recorded. Psellogrammus Eigenmann, 1908 is a mono-
typic genus, including only the lentic Psellogrammus 
kennedyi, which can grow to 5.9 cm long (Lima et al. 
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2003) and inhabits floodplains (Alves and Pompeu 2001). 
It was described from Campo Grande, Asuncion, Par-
aguay, in the Paraguay river basin (Reis et al. 2003), 
and its natural distribution is reportedly in the Lower 
Paraná–Paraguay system (Ota et al. 2018) and São 
Francisco river basin (Tondato et al. 2013; Fricke et al. 
2021). However, the natural occurrence of P. kennedyi is 
reported to the stretch downstream of Sete Quedas Falls 
in the Lower Paraná River (Reis et al. 2020). The occur-
rence of P. kennedyi in the Upper Paraná river basin is 
a result of the elimination of this natural barrier after 
flooding by the Itaipu Dam; thus, this species is classi-
fied as non-native for this region (Graça and Pavanelli 
2007; Júlio Júnior et al. 2009; Ota et al. 2018).

The large number of non-native fishes present in the 
Lower Paranapanema river basin (Garcia et al. 2018a; 
Jarduli et al. 2020) shows that this stretch of the river 
presents several optimal environmental conditions and 
resources for fish species in the system (Blackburn et al. 
2011; Garcia et al. 2018b, 2019). Biological invasion is 
one of the main drivers of biodiversity loss and ecosys-
tem damage. Invasive species are difficult to eradicate, 
and prevention is considered the best approach (Adelino 
et al. 2017). In this way, the knowledge of environmen-
tal conditions and species’ distribution can be used as 
predictive tools for determining the establishment and 
invasive potential (Peterson 2003; Stohlgren et al. 2010).

Through occurrence records and environmental pre-
dictors of the native range of P. kennedyi, we used the 
species distribution models (SDM) (Franklin and Miller 
2010) to generate a predictive model for the potential dis-
tribution of P. kennedyi in the Paraná river basin (Peter-
son 2003; Pereira et al. 2020). Models predicted high 
suitability for P. kennedyi in the Upper Paraná river 
basin. New records corroborate the prediction of the 
potential distribution in the Lower Paranapanema river 
basin, indicating that the basin presents the environ-
mental conditions for this species to become well estab-
lished. In addition, we discuss how the construction of 
dams and the biological aspects of P. kennedyi may have 
facilitated this invasive process.

Methods
Sampling was performed between April 2019 and 
June 2020 during a fish fauna monitoring project in 
the Paranapanema river basin (Project #11218/2018). 
Specimens were collected in the Rosana Reservoir at 
site 1 (22°32′06″S, 052°01′55″W) and in the Taquaruçu 
Reservoir at site 2 (22°39′12″S, 051°37′36″W), site 3 
(22°38′48″S, 051°26′45″W), and site 4 (22°40′07″S, 051°24′ 
10″W), both in the Lower Paranapanema River, which 
is the portion of the basin that begins after Salto Grande 
Falls (currently flooded by the Salto Grande Reservoir; 
Fig. 1). The samples were collected using standard ich-
thyological gear comprising sieve and seine nets of 2 mm 
mesh size. Fish were euthanized by overexposing to 1 g/
ml clove oil, fixed with 10% formalin, and transferred to 

70% alcohol. The Animal Ethics Committee authorized 
the field sampling (Comissão de Ética no uso de Animais, 
CEUA no. 24310.2017.78; collection license no. 16578). 
All specimens are deposited at the Museu de Zoologia 
da Universidade Estadual de Londrina (MZUEL). We 
confirmed identification based on the original descrip-
tion (Eigenmann and Kennedy 1903) and the description 
by Ota et al. (2018); we also consulted expert assistance. 
Measurements and counts were performed on 125 speci-
mens following Fink and Weitzman (1974), using digital 
calipers, point-to-point, on the left side of the specimens 
whenever possible, and with a precision of 0.1 mm (SL = 
standard length).

Occurrence records of P. kennedyi were obtained 
from online databases of species in zoological collec-
tions by searching the Centro de Referência em Infor-
mação Ambiental (272 records) (SpeciesLink; CRIA 
2021) and the Global Biodiversity Information Facility 
(126 records) (GBIF 2021). Only georeferenced records 
containing voucher specimens were considered valid 
for modeling purposes. For modeling the environmen-
tal niche in the native geographic range of P. kennedyi 
(Jiménez-Valverde et al. 2011), we used only native spe-
cies occurrence data (261 records) (i.e., Paraguay basin) 
(Ota et al. 2018; Fricke et al. 2021) (Figs. 1, 3).

Bioclimatic variables are derived from the monthly 
temperature and rainfall values to generate more biologi-
cally meaningful variables. Temperature is responsible 
for altering the metabolism (e.g., enzymatic activity) of 
living organisms and precipitation for the seasonal vari-
ations of droughts and floods, synchronizing biological 
events of fish, such as migration, spawning, home range, 
and growth (Lopes et al. 2017; Ruaro et al. 2019). We 
used six bioclimatic variables related to the environmen-
tal tolerance of P. kennedyi to temperature and precipita-
tion. Their respective codes were: BIO1 = annual mean 
temperature, BIO5 = maximum temperature of warm-
est month, BIO6 = minimum temperature of coldest 
month, BIO12 = annual precipitation, BIO13 = precipita-
tion of wettest month, and BIO14 = precipitation of dri-
est month. Bioclimatic variables were obtained from the 
WorldClim (http://www.worldclim.org/) v. 2.0 (Fick and 
Hijmans 2017). We used a principal component analy-
sis (PCA) to remove redundancy among environmental 
variables to produce uncorrelated variables (Peterson 
et al. 2011). We chose to use the MaxEnt (maximum 
entropy; Phillips et al. 2006) model algorithm, as this 
method has a high capacity for predictive accuracy of 
modeling species–environment relationships using pres-
ence-only data (Franklin and Miller 2010).

We obtained an initial set of 100 models for the spe-
cies, selected at random 75% of the occurrence localities 
at each run for training, and left the remaining 25% for 
testing models. The area under the ROC curve (AUC) 
was calculated to validate the quality of the final mod-
els generated (Phillips et al. 2006), as well as a true skill 
statistic (TSS) analysis which compares the number of 
correct forecasts, minus those attributable to random 

http://www.worldclim.org/
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guessing, to that of a hypothetical set of perfect forecasts 
(Allouche et al. 2006). Models with AUC = 0.7 and TSS 
= 0.4 values were selected to construct the final model 
(Buisson et al. 2010). Maxent jackknife test of variable 
importance was used to evaluate the relative contribu-
tion of each predictor variable to construct the models 
(Yost et al. 2008). All analyses were conducted using the 
R software v. 3.6.3 (R Core Team 2020; R Studio Team 
2020) dismo package (Hijmans et al. 2021).

Results
Psellogrammus kennedyi (Eigenmann 1903)

Figures 1–3; Tables 1, 2

New records. BRAZIL – Paraná • Paranapanema river 
basin, Taquaruçu Reservoir, Lupionópolis municipal-
ity; 22°39′12″S, 051°37′36″W; 12.IV.2019; Laboratório 
de Ecologia de Peixes e Invasões Biológicas LEPIB leg.; 
1, sex undet., 33.9 mm SL, MZUEL 20869 • Porecatu 
municipality; 22°40′07″S, 051°24′10″W; 06.VI.2019; 
LEPIB leg.; 2, sex undet., 34.7 and 41.8 mm SL, MZUEL 

20870 – São Paulo • Paranapanema river basin, Taqua-
ruçu Reservoir, Narandiba municipality, near Anhumas 
River; 22°38′48″S, 051°26′45″W; 06.VI.2019; LEPIB 
leg.; 2, sex undet., 29.7 and 39.6 mm SL, MZUEL 
20872 • Rosana Reservoir, Teodoro Sampaio munici-
pality; 22°32′6″S, 052°01′55″W; 18.VI.2020; LEPIB leg.; 
marginal lagoon; 120, sex undet., 28.3–43.8 mm SL, 
MZUEL 20871.

Identification. Body deep and compressed; greatest 
depth contained 2.1–2.5× and caudal peduncle depth 9.7–
10.8× in standard length; head length 3.4–4.0×, predor-
sal distance 1.9–2.1×; snout length 3.5–4.0×, horizontal 
orbital diameter 2.3–2.8×, and least interorbital width 
2.6–3.2× in head length. Mouth terminal; the inner row 
of premaxilla with 5 teeth, outer row with 3–5 teeth, 
dentary row with 8–11 teeth, and maxilla with 1 tooth. 
Lateral line irregular (incomplete or rarely complete); 
longitudinal series with 40–45 scales. Dorsal fin with 10 
rays, pectoral fin with 12 or 13 rays, pelvic fin with 8 
rays, anal fin with 39–46 rays, and caudal fin with 19 
rays. Ground color whitish; with a diffuse, black humeral 
spot; with a dark-brown, rounded blotch on distal portion 

Figure 1. Distribution of Psellogrammus kennedyi. Yellow stars represent new records from the Paranapanema river basin. Black circles 
represent records from the Paraná and Paraguay river basins.
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of caudal peduncle and caudal-fin base. Fins hyaline 
(Graça and Pavanelli 2007; Ota et al. 2018). Other mea-
surements are presented in Table 1.

Psellogrammus kennedyi is associated with mar-
ginal lagoons and macrophyte banks in the littoral zone 
of the reservoir in our new records. The model obtained 
for the present distribution of P. kennedyi in the Paraná 
basin (Fig. 2) performed well, with an average AUC 
value of 0.74 (± 0.02) and TSS 0.834 (± 0.064), the algo-
rithm converged after 280 iterations. The model shows 
greater suitability for P. kennedyi in the Upper Paraná 
river basin areas, like the lower stretches of Paranaíba, 
Grande, Tietê, and Paranapanema rivers (Fig. 2). The 
mininum temperature of coldest month (BIO6) presented 
the greatest contribution to the model construction, fol-
lowed by the precipitation of driest month (BIO14) and 
annual mean temperature (BIO1); tree variables com-
bined sum up to a total of 95.6% of the contribution for 
the model construction (Table 2). The Jackknife analysis 
also shows the variable BIO1 as the one that presents a 
greater gain to the training of the model.

Discussion
Ecological niche modeling is an approach widely used 
to predict species distribution (Guisan and Zimmermann 
2000; Franklin and Miller 2010). It has been an impor-
tant tool in several research lines, such as biodiversity 
mapping, conservation planning, niche evolution, cli-
mate change impacts on species, and biological invasions 
(Peterson et al. 2008; Kriticos and Leriche 2010; Ruaro 
et al. 2019). Based on environmental predictors through 
niche modeling (Guisan and Thuiller 2005; Araújo and 
Guisan 2006; Pereira et al. 2020), we used data on the nat-
ural occurrence of P. kennedyi to understand the poten-
tial distribution and occurrence of the species outside its 

native range. New records of P. kennedyi in the Upper 
Paraná River in recent years are evidence of an expan-
sion of the non-native distribution of this species (Fiori 
et al. 2016; Peláez et al. 2017; da Costa-Silva et al. 2018; 
Vicentin et al. 2019).

The suggested suitability model predicted that the 
Upper Paraná river basin has good to high potential 
for the increased distribution and establishment of P. 

Figure 2. Psellogrammus kennedyi. MZUEL 20872, 31.5 mm SL, Lower Paranapanema River, Upper Paraná basin, Paraná, Brazil. Scale bar 
= 1 cm.

Table 1. Morphometric data of Psellogrammus kennedyi specimens 
collected in the Lower Paranapanema river basin, Brazil (N = 125). 
SD = standard deviation of averages.

Measurements Range Mean SD

Standard length (mm) 28.3–43.8 36.1 —

Percents of standard length

Body depth 11.2–19.3 15.3 2.9

Body width 2.8–5.0 3.9 0.8

Head length 7.0–10.9 9.0 1.4

Head depth 5.8–9.0 7.4 1.1

Predorsal length 14.6–21.1 17.9 2.3

Prepelvic length 10.9–17.8 14.4 2.4

Preanal length 16.3–23.6 20.0 2.6

Caudal peduncle depth 2.3–3.9 3.1 0.6

Dorsal-fin base length 3.7–5.6 4.7 0.7

Anal-fin base length 12.3–19.2 15.8 2.4

Pectoral-fin length 6.2–10.4 8.3 1.5

Pelvic-fin length 4.1–6.1 5.1 0.7

Dorsal-fin length 7.9–13.7 10.8 2.1

Anal-fin length 5.6–7.9 6.8 0.8

Caudal peduncle length 2.6–5.5 4.1 1.0

Dorsal-fin to adipose-fin distance 5.9–11.8 8.9 2.1

Eye to dorsal-fin origin 11.2–16.6 13.9 1.9

Dorsal origin to caudal origin 14.4–24.5 19.5 3.6

Percentages of head length

Interorbital width 2.6–3.9 3.3 0.5

Snout length 2.9–3.9 3.4 0.4

Orbital diameter 2.7–3.7 3.2 0.4

Upper jaw length 2.0–2.8 2.4 0.3
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kennedyi (> 0.50) (i.e., between 15°S and 24°S in Brazil). 
Our model identified that some environmental variables, 
such as variations in temperature and the annual mean 
precipitation, explain the current range of P. kennedyi. 
We found that the minimum temperature of the cold-
est month, precipitation of the driest month, and annual 
mean temperature are important climatic contributors in 
predicting suitable areas for P. kennedyi. This species is 
favored in regions where climate is less variable, like in 
the Paraguay basin (native region), and also in nearby 
areas at similar latitudes such as the Upper Paraná river 
basin (non-native region), where the average annual tem-
peratures vary between 22.5 °C and 26.5 °C and the 
average annual precipitation in the basin is 1,396 mm, 
ranging from 800 to 1,600 mm (Gonçalves et al. 2011).

The presence of P. kennedyi in the Upper Paraná 
region is due to the Canal da Piracema, a fish transposi-
tion system that connects the region downstream Itaipu 
Dam to the region upstream (Júlio Júnior et al. 2009; Ota 
et al. 2018). After the flooding of the reservoir behind the 
Itaipu Dam, the loss of the Sete Quedas Falls allowed for 
hydrologic connectivity between the Lower and Upper 
Paraná River. Many fishes of the lower region of the 
Paraná River were able to colonize the upper stretches 
(Vitule et al. 2012), including the Paranapanema River 
(Garcia et al. 2018a). The damming of stretches of the 
Lower Paranapanema River for hydroelectric power 
seems to have favored the establishment of P. kenne-
dyi in reservoirs, as reported by Garcia et al. (2018b) for 
other non-native fish species in the Paranapanema River. 
Artificial reservoirs are globally known to be hotspots 
for invaders (Johnson et al. 2008). The colonization of 
reservoirs by small species is well-documented in the lit-
erature, and species that habitually associate with mac-
rophytes in the littoral zone are favored (Casatti et al. 
2003; Pelicice and Agostinho 2009; Agostinho et al. 
2016). Fiori et al. (2016) found that P. kennedyi has phys-
iological adaptations that allow it to obtain the maximum 
energy from food, even if of low nutritional value, or 
that this species can compensate for low-nutrition foods 
by increasing consumption. Thus, P. kennedyi has great 
food plasticity allowing diet changes according to the 
environment, thus favoring its dispersion and invasion.

Species with generalist reproductive and trophic 

Figure 3. Suitability map for Psellogrammus kennedyi. A. South America. B. Paraná river basin.

Table 2. Estimates of average contribution and permutation im­
portance of the environmental variables used in the MaxEnt mod­
eling algorithm for Psellogrammus kennedyi.

Variable Code Percentage 
contribution

Permutation 
importance

Min. temperature of coldest month BIO6 62.2 35.5

Precipitation of driest month BIO14 23.0 13.6

Annual mean temperature BIO1 10.4 45.9

Precipitation of wettest month BIO13 2.3 0.8

Max. temperature of warmest month BIO5 1.2 1.5

Annual precipitation BIO12 0.9 2.6

Threshold kappa: 0.58524682
Sensitivity: 0.58944197
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niche strategies are more likely to have invasion success 
(Agostinho et al. 2007, 2016; Garcia et al. 2018a, 2018b, 
2019). Galvão et al. (2016) observed that P. kennedyi 
might be sexually mature throughout the year, with both 
females and males with three stages of gonadal matura-
tion. Thus, P. kennedyi has asynchronous development 
of oocytes and mature males throughout the year. This 
allows males to always reproduce, making the release 
of sperm possible in the most favorable conditions. This 
reproductive strategy can assist in the colonization of 
new areas, where different niches in temporal and spa-
tial scales are occupied with different size classes (de 
Carvalho et al. 2009; Agostinho et al. 2016; Araújo et al. 
2019). In addition, P. kennedyi has a laterally depressed 
body, and its body is taller than several small characi-
forms which have a fusiform body. This allows P. kenne-
dyi to establish in lentic environments such as marginal 
zones of reservoirs and marginal lagoons (Breda et al. 
2005).

Biological invasions are a serious threat to the Upper 
Paraná and Paranapanema river basins (Langeani et al. 
2007; Júlio Júnior et al. 2009; Pelicice and Agostinho 
2009; Garcia et al. 2018a), and understanding the biology, 
ecology, and potential distribution of non-native species 
can serve as a basis for preventive measures (Simberloff 
2003; Broennimann and Guisan 2008). Our results indi-
cate that distribution modeling should be used to under-
stand potential dispersion, establishment, and invasion 
of non-native species. This knowledge should be used 
preventively, since control and eradication measures are 
often ineffective and with high costs.
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