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Abstract: The coasts located between 39°S and 41°S 
in the Argentinean biogeographic province have been 
described by impoverished seaweed assemblages, 
however the floristic information about this region is 
sparse. The aim of this study was to survey the intertidal 
seaweeds inhabiting three sites in the oceanographic 
system “El Rincon” (Buenos Aires, Argentina). A total of 
42 taxa were identified with a dominance of Rhodophyta 
species. The sandstone outcrops (SO) had 29 taxa, 
whereas both the tidal flat (TF) and oyster reefs (OR) 
had 11 taxa. The estuarial species Ulva intestinalis and 
Ulva prolifera were recorded in TF, whereas calcified 
macroalgae were only found in SO. The differences in 
richness and composition of seaweed assemblages were 
associated with substrate type, wave exposure, incident 
light and salinity. These differences were also evidenced 
by a dissimilar number of functional groups, which 
was higher in SO with a dominance of filamentous 
macroalgae. 
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INTRODUCTION
Seaweeds are major components of intertidal and 

subtidal communities; they contribute significantly 
to marine primary production and constitute nursery 
habitats for a diverse benthic fauna (Lüning 1990). 
Because of their sessile condition, seaweeds are 
constrained to the effects of long-term exposure to 
environmental stress, resulting in changes in the 
structure of the assemblages as a consequence of 
community interactions (Eriksson et al. 2002; Karez et 
al. 2004; Kraufvelin et al. 2006; Pinedo et al. 2007). For 
this reason, seaweeds are considered useful descriptors 

of environmental characteristics of coastal habitats, 
being used as ecological quality bioindicators under the 
Water Framework Directive (Directive 2000/60/EC). 

Water temperature, salinity, light intensity, nutrient 
availability, wave exposure and substrate composition 
are among the most influencing abiotic factors that 
shape the communities of intertidal seaweeds (Dring 
1992). Biotic factors such as competition and grazing 
pressure also influence the distribution and abundance 
of seaweeds in their habitat (Dayton 1971; Korpinen 
et al. 2007). The combination and interaction of these 
dynamic factors determines the composition and 
structure of seaweed assemblages (Dawes 1998; Dethier 
and Williams 2009). 

Recent biogeographic studies along the Argentine 
coast have demonstrated that most of the seaweed 
studies were conducted at high latitudes (Liuzzi et al. 
2011; Wieters et al. 2012), mainly in the provinces of 
Chubut, Santa Cruz and Tierra del Fuego (Mendoza 
1999; Asensi and Küpper 2012; Boraso 2013). According 
to these studies the floristic information about the 
coasts located in latitudes lower than 42° S is sparse. 
The lower sampling effort on inferior latitudes may 
be in part related to the decreasing trend of seaweed 
biodiversity with decreasing latitude (Liuzzi et al. 2011). 
According to this study, the main points of reduction 
of seaweed biodiversity coincide with the boundary 
between two biogeographic provinces, the Argentinean 
province, which extends from the mouth of La Plata 
River (35° S) to a transition zone between 41–44° S, 
and the Magellanic province, that extends from Valdés 
Peninsula to the southern extreme of the continent 
(Balech and Ehrlich 2008). The coast of Buenos Aires 
Province has therefore been denoted as a region of 
impoverished algal assemblages (Liuzzi et al. 2011). 
However, between 39° and 41°S there is an important 
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low water column, as a consequence of the wind and 
tides effect (Guerrero 1998). The tidal regime in the area 
is semi-diurnal (SHN 2014). 

The sampling was carried out in three characteristic 
sites, sandstone outcrops (SO), tidal flats (TF) and 
oyster reefs (OR). 

The site SO (38°58ʹ S, 061°40ʹ W) is located in Pehuen 
Co-Monte Hermoso Geological, Paleontological and 
Archaeological Reserve. The coast is characterized by 
a sandy marine beach, with superficial gravel and an 
abrasion platform temporally exposed at different 
sections of the beach. The collection of seaweeds was 
carried out at the outcrops composed of a mixture of 
sand and mud (Figure 1b) (Caló et al. 1998). 

Site TF (38°51ʹ S, 062°08ʹ W) is located in Bahía 
Blanca, Bahía Falsa and Bahía Verde Natural Reserve. 
The collection was carried out in a region of offshore 
bars formed by silt-clay and sandy-silt stone (Figure 1c). 
These tidal flats are characterized by the absence of tidal 
creeks and channels (Pratolongo et al. 2010). 

Site OR (40°25ʹ S, 062°25ʹ W) is located in San Blas 
Natural Reserve (Figure 1d). The reserve comprises a 

oceanographic system known as “El Rincon”, which 
has become relevant during the last decades because it 
comprises valuable ecological and economical resources 
(Perrotta et al. 1999). 

The lack of detailed historical records in this part of the 
country, coupled with the absence of a comprehensive 
and current picture of seaweed communities, provides 
little context to detect the floristic changes, hence the 
importance of building up a record of the intertidal 
seaweeds from this region. 

The objectives of the present study were: 1) to record 
the intertidal macroalgal species present in different 
coasts of “El Rincon” coastal area; and 2) to evaluate the 
differences in species richness and functional groups in 
relation to oceanographic factors. 

MATERIALS AND METHODS
Study area

The study was conducted at three coasts from 
“El Rincon” coastal area, an oceanographic system 
located between 39° and 41°S (Figure 1a). This area is 
characterized by a strong vertical homogeneity in the 

Figure 1. Location of the sampling sites in “El Rincon” coastal area (a) and general aspect of the intertidal zones in SO = sandstone outcrops (b), TF = tidal 
flats (c) and OR = oyster reef (d). 
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shallow coastal ecosystem with islands, marshes, pebble 
beaches and sandy beaches (Álvarez and Rios 1988). The 
collection was carried out in an intertidal interrupted by 
a large oyster reef of the Pacific Oyster, Crassostrea gigas 
(Thunberg, 1793) (Borges 2005). 

Field and laboratory methods
Sampling was carried out between 2007 and 2014, 

during low tide in the intertidal zone of each site. 
Seaweeds were sampled along transects located per-
pendicular to the coastline, collected manually into 
plastic bags and transported to the laboratory in cold 
boxes. Prior to examination, seaweeds were rinsed with 
filtered seawater and drained on blotting paper. 

Observations of external appearance and vegetative 
and reproductive morphology were made on fresh 
specimens under a stereoscopic microscope (Wild Heer-
brugg) and an inverted microscope (Nikon Eclipse TE). 

Specimens were pressed in herbarium sheets and 
incorporated to the section Cryptogams of the BBB 
Herbarium of Universidad Nacional del Sur (UNS), 
Bahia Blanca, Argentina. Sections of the thalli were also 
preserved in 4% formaldehyde. 

Taxonomic identification was carried out using tra-
ditional literature: Burrows (1987), Wormersley (1987), 
Schneider and Searles (1991), Freshwater and Rueness 
(1994), Littler and Littler(2000), Perrone et al. (2006), 
Stuercke and Freshwater (2008). Nomenclatural update 
was obtained from AlgaeBase (Guiry and Guiry 2014). 

Seaweed taxa were classified according to descriptors 
and morphological groups proposed by Steneck and 
Dethier (1994) and modified by Balata et al. (2011), and 
the number of taxa belonging to each functional group 
was compared between the three study sites. 

RESULTS
A total of 42 taxa were identified, 17 Rhodophyta, 

13 Chlorophyta and 12 Phaeophyceae, distributed in 
13 orders, 19 families, and 24 genera (Table 1). The 
percentage of taxa representing each group was 40%, 
31% and 29%, respectively. 

Of all sites, SO had the highest richness of seaweed, 
with a total of 29 taxa. An equal number of taxa was 
recorded at TF and OR, with 11 taxa in each site. 

The three groups, Rhodophyta, Chlorophyta and 
Phaeophyceae, had the highest number of taxa in SO 
(Figure 2). Rhodophyta was the dominant group in TF 
(55% of the taxa) as well as in SO (41% of the taxa), while 
Chlorophyta was the dominant group in OR, with 45% 
of the taxa belonging to this group. 

Five genera, Polysiphonia, Ceramium, Gelidium, 
Punctaria and Ulva, were present in the three sites, but 
only one species, Bryopsis plumosa (Hudson) C. Agardh, 
was common in the three sites. The genera Leathesia, 
Dictyota, Saccharina, Petalonia, Sphacelaria, Codium, Jania, 

Table 1. List of seaweeds identified at each sampling site. SO = sandstone 

outcrops, TF = tidal flats and OR = oyster reef. 

PHYLUM/ 
Order/Family Taxon

Site
SO TF OR

RHODOPHYTA  (Classes Florideophyceae and Bangiophyceae)

Rhodymeniales
Rhodymeniaceae Rhodymenia pseudopalmata (J. V. Lamouroux) 

P. C. Silva
x

Ceramiales
Wrangeliaceae Neoptilota asplenioides (Esper) Kylin ex Sacgel, 

Garbary, Gorden & Hawkes
x

Rhodomelaceae Pterosiphonia dendroidea (Montagne) Falkenberg x

Polysiphonia abscissa J. D. hooker & Harvey x x

Polysiphonia brodiei (Dillwyn) Sprengel x

Polysiphonia morrowii Harvey x x

Polysiphonia denudata (Dillwyn) Greville ex 
Harvey

x

Neosiphonia harveyi (Bailey) M. S. Kim, H. G. Choi, 
Guiry & G. W. Saunders

x

Ceramiaceae Ceramium rubrum C. Agardh x

Ceramium strictum Greville & Harvey x

Ceramium diaphanum (Lightfoot) Roth x

Corallinales
Corallinaceae Corallina elongata J. Ellis & Solander x

Jania rubens (Linnaeus) J.V. Lamouroux x

Gigartinales
Mychodeaceae Mychodea carnosa J.D. Hooker & Harvey x

Gelidiales
Gelidiaceae Gelidium pusillum (Stackhouse) Le Jolis x x

Gelidium crinale (Hare ex Turner) Gaillon x x

Bangiales
Bangiaceae Pyropia thuretii (Setchell & E.Y. Dawson) J.E. 

Sutherland, L.E. Aguilar Rosas & R. Aguilar Rosas
x

HETEROKONTOPHYTA  (Class Phaeophyceae)

Ectocarpales
Ectocarpaceae Ectocarpus sp. x

Ectocarpus siliculosus (Dillwyn) Lyngbye x

Scytosiphonaceae Petalonia fascia (O.F. Müller) Kuntze x

Scytosiphon dotyi M.J. Wynne x

Scytosiphon lomentaria (Lyngbye) Link x

Chordariaceae Punctaria latifolia Greville x x

Punctaria plantaginea (Roth) Greville x

Leathesia difformis Areschoug x

Dictyotales
Dictyotaceae Dictyota dichotoma (Hudson) J.V. Lamouroux x

Dictyota dichotoma var. intricata (C. Agardh) 
Greville

x

Sphacelariales
Sphacelariaceae Sphacelaria cirrosa (Roth) C. Agardh x

Laminariales
Laminariaceae Saccharina sessilis (C. Agardh) Kuntze x

CHLOROPHYTA  (Class Ulvophyceae)

Ulvales
Kornmanniaceae Blidingia marginata (J. Agardh) P.J.L. Dangeard x

Blidingia minima (Nägeli ex kützing) Kylin x

Ulvaceae Ulva lactuca Linnaeus x x

Ulva linza Linnaeus x x

Ulva gigantea (Kützing) Bliding x

Ulva prolifera O. F. Müller x

Ulva intestinalis Linnaeus x

Bryopsidales
Bryopsidaceae Bryopsis plumosa (Hudson) C. Agardh x x x

Codiaceae Codium fragile (Suringar) Hariot x

Codium vermilara (Olivi) Delle Chiaje x

Codium tomentosum Stackhouse x

Cladophorales
Cladophoraceae Cladophora albida (Nees) Kützing x

Cladophora lehmanniana (Lindenberg) Kützing x
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Corallina, Pyropia, Mychodea, Pterosiphonia, Neo ptilota 
and Rhodymenia were restricted to the intertidal of SO, 
and were not observed in the other sites. Two species 
typical of estuarial waters, Ulva intestinalis Linnaeus and 
Ulva prolifera O.F. Müller, were only recorded in TF. On 
the other hand, two species of calcified macroalgae, Jania 
rubens (Linnaeus) J.V. Lamouroux and Corallina elongata 
J. Ellis & Solander, were recorded in SO, whereas no 
calcified macroalgae was registered in TF and OR. 

Regarding the morphological functional groups, a 
total of 17 groups were recorded at SO, while the number 
of groups present at TF and OR was considerably 
lower, with six and seven groups, respectively (Table 
2). Considering the three sites, the best represented 
functional groups were filamentous uniseriate and 
pluriseriate with erect thallus (19%), blade-like (12%), 
filamentous uniseriate (10%) and tubular (10%). 

The number of functional groups was highest at 
SO, where there were many different morphologies 
and forms of macroalgae. The taxa with ‘filamentous 
uniseriate and pluriseriate erect thallus’ were the most 
abundant at SO; at TF the majority of the taxa belonged 
to the functional groups ‘blade-like’ and ‘filamentous 
uniseriate and pluriseriate with erect thallus’, whereas 
at OR blade, filamentous and tubular macroalgae were 
similarly represented (Figure 3). 

DISCUSSION
Rhodophyta was the best represented group in terms 

of number of taxa, while Chlorophyta and Phaeophyceae 
were similarly represented. The proportion of the three 
groups follows the trend observed by Liuzzi et al. (2011) 
and by Miloslavich et al. (2011) for the Argentinean coast. 
The total number of Rhodophyta, Chlorophyta and 
Phaeophyceae taxa found in the three sites represented 
an 11%, 22% and 20% of the total species of each group 
registered for the Patagonian shelf subregion of South 
America (Miloslavich et al. 2011). 

Total seaweed richness was higher than expected 
considering the study of Liuzzi et al. (2011), who point 
out that coasts from Río Negro and Buenos Aires 
provinces should be regarded as impoverished in terms 
of seaweed diversity. 

The richness of genera was lower than that recorded 
by Sar et al. (1984) for the coast of Mar del Plata in 
Buenos Aires Province (38°S), whereas the total number 
of species was similar. Both sites shared more than 60% 
of the genera and nine species. 

The highest richness of seaweeds found at SO could 
be due to the different oceanographic characteristics 
of this coast. The main difference between the three 
coasts is related to the degree of wave exposure, since 
TF and OR are less exposed to waves than SO because 

Figure 2. Percentage of taxa corresponding to Rhodophyta, Phaeophy-
ceae and Chlorophyta recorded in each sampling site. SO = sandstone 
outcrops, TF = tidal flats and OR = oyster reef. Numbers inside the bars 
represent the number of taxa of each group. 

Table 2. Classification of seaweed taxa found in the study sites according to functional groups delimited by Balata et al. (2011). 

Number Functionalgroup Taxa
1 Blade-like Ulva lactuca, Ulva linza, Ulva prolifera, Ulva intestinalis, Ulva gigantea

2 Blade-like with one or few layers of cells Pyropia thuretii

3 Codium with erect thallus Codium fragile, Codium vermilara, Codium tomentosum

4 Compressed with blade-like habit Petalonia fascia, Punctaria latifolia, Punctaria plantaginea

5 Compressed with branched or divided thallus Dictyota dichotoma, Dictyota dichotoma var. intrincata

6 Filamentous uniseriate Ectocarpus sp., Ectocarpus siliculosus, Cladophora albida, Cladophora lehmanniana

7 Filamentous uniseriate and pluriseriate with erect thallus Neoptilota asplenioides, Pterosiphonia dendroidea, Polysiphonia abscissa, Polysiphonia 
morrowii, Polysiphonia denudata, Ceramium rubrum, Ceramium strictum, Ceramium 
diaphanum

8 Flattened macrophytes with cortication Rhodymenia pseudopalmata

9 Hollow with spherical or subspherical shape Leathesia difformis

10 Kelp-like Saccharina sessilis

11 Larger-sized articulate corallines Corallina elongata

12 Larger-sized corticated Mychodea carnosa, Gelidium pusillum, Gelidium crinale

13 Siphonous with thin separated filaments Bryopsis plumosa

14 Smaller size corticated Polysiphonia brodiei, Neosiphonia harveyi

15 Smaller-sized articulated corallines Jania rubens

16 Smaller-sized filamentous pluriseriate Sphacelaria cirrosa

17 Tubular Scytosiphon lomentaria, Scytosiphon dotyi, Blidingia marginata, Blidingia minima



 Check List  |  www.biotaxa.org/cl Volume 11 | Number 5 | Article 1739 5

Croce et al.  |  Seaweeds from Patagonian coasts, Argentina

both coasts are ‘protected’ either in the inner part of an 
estuary (TF) or in a shallow bay (OR). As a consequence, 
the waters of TF and OR are more turbid than those 
of SO, limiting the growth of seaweeds. In these 
systems, the low penetration of light through the water 
column difficults the settlement of sensible species, 
while it favors the settlement of tolerant ones such as 
opportunistic seaweeds with rapid growth rates such as 
Ulva, and small turf-like Rhodophyta such as Gelidium, 
which are commonly dominant in shallow reefs (Hay 
1981). 

Another difference is the mixture of marine water with 
freshwater. The variability of salinity at TF is high (16 to 
40) because of its location in the Bahia Blanca Estuary 
(Freije and Marcovecchio 2004). On the other hand, SO 
does not have the influence of freshwater, whereas OR 
receives a small discharge of freshwater from Riacho 
Azul, which is less important. The low species richness 
observed at TF may also be related to a higher gradient 
of physiological stress, as has been observed for marine 
organisms inhabiting estuarial coasts (Sanders 1968; 
Wolff 1972). 

Another important factor determining the com-
position of seaweed communities is the availability of 
substrate. Increased substrate microtopography can have 
positive effects on the abundance of certain macroalgal 
species (Irving and Connel 2002). TF and OR have less 
diversity of microhabitats because the outcrops are flat, 
with shallow tide pools. Contrastingly, the outcrops at 
SO are higher and rugged, which gives rise to a more 
complex substrate structure, and consequently a higher 
diversity of microhabitats (Hurd et al. 2014). 

Consistent with the results of Liuzzi et al. (2011), 
filamentous macroalgae were the best represented (31%), 
followed by blade-like (foliose) (21%) and corticated 
macroalgae (12%). The absence of kelp-like macroalgae, 
except for the potential introduction of Saccharina 
sessilis (C. Agardh) Kuntze, may be related to high water 
temperature and low flow energy, since this group 
usually inhabits cold waters with high current energy 
(Lüning 1990; Liuzzi et al. 2011; McGlathery et al. 2013). 
In Argentina, they are common in southern regions 
(Asensi 1966) but disappear north of 42° S (Liuzzi et al. 
2011). 

Figure 3. Number of taxa of each functional group found in each sampling site. SO = sandstone outcrops, TF = tidal flats and OR = oyster reef. 

0 2 4 6 8 10 12

Blade-like

Blade-like with one or few layers of cells

Codium with erect thallus

Compressed with blade-like habit

Compressed with branched or divided thallus

Filamentous uniseriate

Filamentous uniseriate and pluriseriate with erect thallus

Flattened macrophytes with cortication

Hollow with spherical or subspherical shape

Kelp-like

Larger-sized articulate corallines

Larger-sized corticated

Siphonous with thin separate filaments

Smaller size corticated

Smaller-sized articulated corallines

Smaller-sized filamentous pluriseriate

Tubular

Number of taxa

SO

TF

OR



 Check List  |  www.biotaxa.org/cl Volume 11 | Number 5 | Article 1739 6

Croce et al.  |  Seaweeds from Patagonian coasts, Argentina

The uniform representation of functional groups 
observed at TF and OR was a consequence of a low 
number of species. On the other hand, the higher 
richness observed in SO resulted in a higher diversity 
of functional groups, where a few forms were dominant. 

Several taxa recorded at SO were representative of 
different levels of the theoretical intertidal zonation. 
Pyropia is characteristic of the upper intertidal, Corallina 
and Jania usually inhabit middle to low intertidal, 
whereas Codium and Dictyota are characteristic of low 
intertidal-subtidal. On the other hand, the absence of 
the spray phenomenon at TF and OR, as a result of low 
wave energy, might prevent seaweed species to colonize 
higher intertidal levels in those sites. 

TF has been pointed as an eutrophic system, in part 
because of natural causes and in part due to the high 
input of nutrients from urban settlements (Lara et al. 
1985). According to that, many of the taxa recorded are 
typically from eutrophic coasts, which are opportunistic 
and ephemeral like Ulva and Polysiphonia (Littler and 
Littler 1984). 

The occurrence of Punctaria latifolia Greville was 
occasional at TF and a well-established population was 
not observed, with only some thalli unattached and 
sparsely distributed among the stems of Spartina sp. 
were found. On the other hand, red macroalgae such 
as Ceramium and Polysiphonia developed conspicuous 
populations in TF, they are frequently found in estuarial 
habitats (Orris 1980). 

Several species of marine and freshwater macroalgae 
have been recorded in the Bahia Blanca Estuary, namely, 
Enteromorpha flexuosa (Wulfen) J. Agardh, Cladophora 
surera Parodi & Cáceres, Ulva sp. , Chaetomorpha aerea 
(Dillwyn) Kützing, Gracilaria verrucosa (Hudson) 
Papenfuss, Polysiphonia sp. , Ceramium sp. , Ectocarpus 
siliculosus (Dillwyn) Lyngbye, Hincksia hincksiae (Harvey) 
P. C. Silva and Punctaria sp. (Perillo et al. 2001). However, 
in the present study only species of Polysiphonia, 
Ceramium, Ulva and Punctaria were found in TF. 

The recorded species Neoptilota asplenioides (Esper) 
Kylin ex Scagel, Garbary, Golden & Hawkes, Polysiphonia 
denudate (Dillwyn) Greville ex Harvey, Mychodea carnosa 
J. D. Hooker & Harvey, Gelidium pusillum (Stackhouse) 
Le Jolis, Pyropia thuretii (Setchell & E. Y. Dawson) 
Sutherland, L. E. Aguilar-Rosas & R. Aguilar-Rosas, 
Dictyota dichotoma var. intrincata (C. Agardh) Greville, 
Saccharina sessilis, Ulva gigantea (Kützing) Bliding and 
Codium tomentosum Stackhouse constitute new records 
for Argentina. 

Of all taxa recorded, three species may be considered 
as introduced, Polysiphonia morrowii Harvey (Croce and 
Parodi 2014), Neosiphonia harveyi (Bailey) Kim, Choi, 
Guiry & Saunders (Boraso 2013) and Saccharina sessilis 
(unpublished data). 

This study contributes to fill the gap of information 
about macroalgae species inhabiting the Argentinean 
coasts between 39° S and 41° S, providing fundamental 
data for biogeographical studies. 
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